准确的干旱预测对于减轻或规避干旱对区域粮食生产和水资源配置的不利影响至关重要。大气环流因子可能会通过遥相关影响农业干旱的发生、发展和传递过程,在干旱预测模型中引入大气环流因子是否会改善农业干旱的预测性能尚不明晰。该研...准确的干旱预测对于减轻或规避干旱对区域粮食生产和水资源配置的不利影响至关重要。大气环流因子可能会通过遥相关影响农业干旱的发生、发展和传递过程,在干旱预测模型中引入大气环流因子是否会改善农业干旱的预测性能尚不明晰。该研究以农业干旱、高温和大气环流因子为预测因子,在不同预见期(1、12、24、36、48个月)下采用Meta-Gaussian(MG)模型预测黄河流域典型年份的农业干旱事件,通过纳什效率系数(Nash-Sutcliffe efficiency coefficient,NSE)和均方根误差(root mean square error,RMSE)探究在MG模型中引入大气环流因子对农业干旱预测性能的影响。结果表明:大气环流因子中12个月时间尺度的标准化西太平洋副高强度指数(standardized western Pacific subtropical high intensity index,SWPSHI)与农业干旱相关性最为显著;以典型年2014年8月份为例发现MG模型预测值受预见期长度、预测因子影响较大;相比于单因子预测,引入大气环流因子的MG模型的评价指标NSE和RMSE改善网格占比最高达46%,空间上在内蒙古、宁夏、甘肃、陕西等省区1 a以上预见期明显改善,而考虑大气环流因子和高温的MG模型进一步提升了模型的预测性能,扩大了网格占比。因此在上述省区干旱预测时需考虑大气环流因子的影响。展开更多
文摘准确的干旱预测对于减轻或规避干旱对区域粮食生产和水资源配置的不利影响至关重要。大气环流因子可能会通过遥相关影响农业干旱的发生、发展和传递过程,在干旱预测模型中引入大气环流因子是否会改善农业干旱的预测性能尚不明晰。该研究以农业干旱、高温和大气环流因子为预测因子,在不同预见期(1、12、24、36、48个月)下采用Meta-Gaussian(MG)模型预测黄河流域典型年份的农业干旱事件,通过纳什效率系数(Nash-Sutcliffe efficiency coefficient,NSE)和均方根误差(root mean square error,RMSE)探究在MG模型中引入大气环流因子对农业干旱预测性能的影响。结果表明:大气环流因子中12个月时间尺度的标准化西太平洋副高强度指数(standardized western Pacific subtropical high intensity index,SWPSHI)与农业干旱相关性最为显著;以典型年2014年8月份为例发现MG模型预测值受预见期长度、预测因子影响较大;相比于单因子预测,引入大气环流因子的MG模型的评价指标NSE和RMSE改善网格占比最高达46%,空间上在内蒙古、宁夏、甘肃、陕西等省区1 a以上预见期明显改善,而考虑大气环流因子和高温的MG模型进一步提升了模型的预测性能,扩大了网格占比。因此在上述省区干旱预测时需考虑大气环流因子的影响。