In this paper,the continuity and thermodynamic equations including moisture forcings were derived.Using these two equations and the basic momentum equation of local Cartesian coordinates,the budget equation of general...In this paper,the continuity and thermodynamic equations including moisture forcings were derived.Using these two equations and the basic momentum equation of local Cartesian coordinates,the budget equation of generalized moist potential vorticity(GMPV) was derived.The GMPV equation is a good generalization of the Ertel potential vorticity(PV) and moist potential vorticity(MPV) equations.The GMPV equation is conserved under adiabatic,frictionless,barotropic,or saturated atmospheric conditions,and it is closely associated with the horizontal frontogenesis and stability of the real atmosphere.A real case study indicates that term diabatic heating could be a useful diagnostic tool for heavy rainfall events.展开更多
The interaction between the low-frequency atmospheric oscillation(Madden-Julian Oscillation,MJO) and the diabatic heating over the Qinghai-Xizang Plateau(QXP) from March to June is analyzed.The results show that there...The interaction between the low-frequency atmospheric oscillation(Madden-Julian Oscillation,MJO) and the diabatic heating over the Qinghai-Xizang Plateau(QXP) from March to June is analyzed.The results show that there are respectively two and one wave trains around the QXP during the onset of the South China Sea monsoon in strong and weak monsoon years.The locations and strength of the wave train propagation differ between the strong and weak monsoon years.Because diabatic heating of the QXP prevents the low-frequency oscillation,the wave train of interaction between the diabatic heating and the zonal wind MJO propagates along the west and east of the QXP in the strong monsoon years.The distribution of the wave train interaction between the diabatic heating and the zonal wind MJO traverses the QXP and coincides with the location of the southern and northern upper-level jet streams,showing that they are remarkably correlated.An interesting and notable phenomenon is that the interaction between diabatic heating and the zonal wind MJO over the QXP suddenly disappears during the monsoon onset in weak monsoon years.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41075032)Chinese Special Scientific Research Project for Public Interest (Grant No. GYHY200906004)the National Basic Research Program of China (Grant No. 2010CB951804)
文摘In this paper,the continuity and thermodynamic equations including moisture forcings were derived.Using these two equations and the basic momentum equation of local Cartesian coordinates,the budget equation of generalized moist potential vorticity(GMPV) was derived.The GMPV equation is a good generalization of the Ertel potential vorticity(PV) and moist potential vorticity(MPV) equations.The GMPV equation is conserved under adiabatic,frictionless,barotropic,or saturated atmospheric conditions,and it is closely associated with the horizontal frontogenesis and stability of the real atmosphere.A real case study indicates that term diabatic heating could be a useful diagnostic tool for heavy rainfall events.
基金supported by National Basic Research Program of China (Grant No. 2007CB411506)National Natural Science Foundation of China (Grant No. 40875050)
文摘The interaction between the low-frequency atmospheric oscillation(Madden-Julian Oscillation,MJO) and the diabatic heating over the Qinghai-Xizang Plateau(QXP) from March to June is analyzed.The results show that there are respectively two and one wave trains around the QXP during the onset of the South China Sea monsoon in strong and weak monsoon years.The locations and strength of the wave train propagation differ between the strong and weak monsoon years.Because diabatic heating of the QXP prevents the low-frequency oscillation,the wave train of interaction between the diabatic heating and the zonal wind MJO propagates along the west and east of the QXP in the strong monsoon years.The distribution of the wave train interaction between the diabatic heating and the zonal wind MJO traverses the QXP and coincides with the location of the southern and northern upper-level jet streams,showing that they are remarkably correlated.An interesting and notable phenomenon is that the interaction between diabatic heating and the zonal wind MJO over the QXP suddenly disappears during the monsoon onset in weak monsoon years.