On the basis of two ensemble experiments conducted by a general atmospheric circulation model(Institute of Atmospheric Physics nine-level atmospheric general circulation model coupled with land surface model,hereinaft...On the basis of two ensemble experiments conducted by a general atmospheric circulation model(Institute of Atmospheric Physics nine-level atmospheric general circulation model coupled with land surface model,hereinafter referred to as IAP9L_CoLM),the impacts of realistic Eurasian snow conditions on summer climate predictability were investigated.The predictive skill of sea level pressures(SLP)and middle and upper tropospheric geopotential heights at mid-high latitudes of Eurasia was enhanced when improved Eurasian snow conditions were introduced into the model.Furthermore,the model skill in reproducing the interannual variation and spatial distribution of the surface air temperature(SAT)anomalies over China was improved by applying realistic(prescribed)Eurasian snow conditions.The predictive skill of the summer precipitation in China was low;however,when realistic snow conditions were employed,the predictability increased,illustrating the effectiveness of the application of realistic Eurasian snow conditions.Overall,the results of the present study suggested that Eurasian snow conditions have a significant effect on dynamical seasonal prediction in China.When Eurasian snow conditions in the global climate model(GCM)can be more realistically represented,the predictability of summer climate over China increases.展开更多
To estimate atmospheric predictability for multivariable system, based on information theory in nonlinear error growth dynamics, a quantitative method is introduced in this paper using multivariable joint predictabili...To estimate atmospheric predictability for multivariable system, based on information theory in nonlinear error growth dynamics, a quantitative method is introduced in this paper using multivariable joint predictability limit(MJPL) and corresponding single variable predictability limit(SVPL). The predictability limit, obtained from the evolutions of nonlinear error entropy and climatological state entropy, is not only used to measure the predictability of dynamical system with the constant climatological state entropy, but also appropriate to the case of climatological state entropy changed with time. With the help of daily NCEP-NCAR reanalysis data, by using a method of local dynamical analog, the nonlinear error entropy, climatological state entropy, and predictability limit are obtained, and the SVPLs and MJPL of the winter 500-hPa temperature field, zonal wind field and meridional wind field are also investigated. The results show that atmospheric predictability is well associated with the analytical variable. For single variable predictability, there exists a big difference for the three variables, with the higher predictability found for the temperature field and zonal wind field and the lower predictability for the meridional wind field. As seen from their spatial distributions, the SVPLs of the three variables appear to have a property of zonal distribution, especially for the meridional wind field, which has three zonal belts with low predictability and four zonal belts with high predictability. For multivariable joint predictability, the MJPL of multivariable system with the three variables is not a simple mean or linear combination of its SVPLs. It presents an obvious regional difference characteristic. Different regions have different results. In some regions, the MJPL is among its SVPLs. However, in other regions, the MJPL is less than its all SVPLs.展开更多
基金supported by the Special Public Sector Research of Meteorology (Grant No. GYHY200906018)the National Basic Research Program of China (Grant No. 2009CB421407)the National Key Technologies R&D Program of China (Grant No. 2007BAC29B03)
文摘On the basis of two ensemble experiments conducted by a general atmospheric circulation model(Institute of Atmospheric Physics nine-level atmospheric general circulation model coupled with land surface model,hereinafter referred to as IAP9L_CoLM),the impacts of realistic Eurasian snow conditions on summer climate predictability were investigated.The predictive skill of sea level pressures(SLP)and middle and upper tropospheric geopotential heights at mid-high latitudes of Eurasia was enhanced when improved Eurasian snow conditions were introduced into the model.Furthermore,the model skill in reproducing the interannual variation and spatial distribution of the surface air temperature(SAT)anomalies over China was improved by applying realistic(prescribed)Eurasian snow conditions.The predictive skill of the summer precipitation in China was low;however,when realistic snow conditions were employed,the predictability increased,illustrating the effectiveness of the application of realistic Eurasian snow conditions.Overall,the results of the present study suggested that Eurasian snow conditions have a significant effect on dynamical seasonal prediction in China.When Eurasian snow conditions in the global climate model(GCM)can be more realistically represented,the predictability of summer climate over China increases.
基金supported by the National Natural Science Foundation of China (Grant No. 41375063)
文摘To estimate atmospheric predictability for multivariable system, based on information theory in nonlinear error growth dynamics, a quantitative method is introduced in this paper using multivariable joint predictability limit(MJPL) and corresponding single variable predictability limit(SVPL). The predictability limit, obtained from the evolutions of nonlinear error entropy and climatological state entropy, is not only used to measure the predictability of dynamical system with the constant climatological state entropy, but also appropriate to the case of climatological state entropy changed with time. With the help of daily NCEP-NCAR reanalysis data, by using a method of local dynamical analog, the nonlinear error entropy, climatological state entropy, and predictability limit are obtained, and the SVPLs and MJPL of the winter 500-hPa temperature field, zonal wind field and meridional wind field are also investigated. The results show that atmospheric predictability is well associated with the analytical variable. For single variable predictability, there exists a big difference for the three variables, with the higher predictability found for the temperature field and zonal wind field and the lower predictability for the meridional wind field. As seen from their spatial distributions, the SVPLs of the three variables appear to have a property of zonal distribution, especially for the meridional wind field, which has three zonal belts with low predictability and four zonal belts with high predictability. For multivariable joint predictability, the MJPL of multivariable system with the three variables is not a simple mean or linear combination of its SVPLs. It presents an obvious regional difference characteristic. Different regions have different results. In some regions, the MJPL is among its SVPLs. However, in other regions, the MJPL is less than its all SVPLs.