An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean (AIPO) has been developed and is currently delivering reanalysis data sets for study on the air-sea interaction over AIPO and its climat...An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean (AIPO) has been developed and is currently delivering reanalysis data sets for study on the air-sea interaction over AIPO and its climate variation over China in the inter-annual time scale.This system consists of a nested ocean model forced by atmospheric reanalysis,an ensemble-based multivariate ocean data assimilation system and various ocean observations.The following report describes the main components of the data assimilation system in detail.The system adopts an ensemble optimal interpolation scheme that uses a seasonal update from a free running model to estimate the background error covariance matrix.In view of the systematic biases in some observation systems,some treatments were performed on the observations before the assimilation.A coarse resolution reanalysis dataset from the system is preliminarily evaluated to demonstrate the performance of the system for the period 1992 to 2006 by comparing this dataset with other observations or reanalysis data.展开更多
This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the stu...This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.展开更多
基金supported by the Chinese Academy of Sciences (Grant No. KZCX2-YW-202)the 973 Pro-gram (Grant No. 2006CB403606),the 863 Program (Grant No.2009AA12Z138)the National Natural Science Foundation of China (Grant Nos. 40606008,40437017,and 40221503)
文摘An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean (AIPO) has been developed and is currently delivering reanalysis data sets for study on the air-sea interaction over AIPO and its climate variation over China in the inter-annual time scale.This system consists of a nested ocean model forced by atmospheric reanalysis,an ensemble-based multivariate ocean data assimilation system and various ocean observations.The following report describes the main components of the data assimilation system in detail.The system adopts an ensemble optimal interpolation scheme that uses a seasonal update from a free running model to estimate the background error covariance matrix.In view of the systematic biases in some observation systems,some treatments were performed on the observations before the assimilation.A coarse resolution reanalysis dataset from the system is preliminarily evaluated to demonstrate the performance of the system for the period 1992 to 2006 by comparing this dataset with other observations or reanalysis data.
基金supported by the National Natural Science Foundation of China(Grant Nos.41230420,41376018&41606012)
文摘This paper reviews the historic understanding of the predictability of atmospheric and oceanic motions, and interprets it in a general framework. On this basis, the existing challenges and unsolved problems in the study of the intrinsic predictability limit(IPL) of weather and climate events of different spatio-temporal scales are summarized. Emphasis is also placed on the structure of the initial error and model parameter errors as well as the associated targeting observation issue. Finally, the predictability of atmospheric and oceanic motion in the ensemble-probabilistic methods widely used in current operational forecasts are discussed.The necessity of considering IPLs in the framework of stochastic dynamic systems is also addressed.