Using a regional climate model(RCM) is generally regarded as a promising approach in researching the climate of the Tibetan Plateau, due to the advantages provided by the high resolutions of these models. Whilst pre...Using a regional climate model(RCM) is generally regarded as a promising approach in researching the climate of the Tibetan Plateau, due to the advantages provided by the high resolutions of these models. Whilst previous studies have focused mostly on individual RCM simulations, here, multiple RCMs from the Coordinated Regional Climate Downscaling Experiment are evaluated in simulating surface air temperature and precipitation changes over the Tibetan Plateau using station and gridded observations. The results show the following:(1) All RCMs consistently show similar spatial patterns, but a mean cold(wet) bias in the temperature(precipitation) climatology compared to station observations. The RCMs fail to reproduce the observed spatial patterns of temperature and precipitation trends, and on average produce greater trends in temperature and smaller trends in precipitation than observed results. The multi-model ensemble overall produces superior trends in both simulated temperature and precipitation relative to individual models. Meanwhile, Reg CM4 presents the most reasonable simulated trends among the five RCMs.(2) Considerable dissimilarities are shown in the simulated quantitative results from the different RCMs, which indicates a large model dependency in the simulation of climate over the Tibetan Plateau. This implies that caution may be needed when an individual RCM is used to estimate the amplitude of climate change over the Tibetan Plateau.(3) The temperature(precipitation) in 2016–35, relative to 1986–2005, is projected by the multi-model ensemble to increase by 1.38 ± 0.09 °C(0.8% ± 4.0%) and 1.77 ± 0.28 °C(7.3% ± 2.5%) under the RCP4.5 and RCP8.5 scenario, respectively. The results of this study advance our understanding of the applicability of RCMs in studies of climate change over the Tibetan Plateau from a multiple-RCM perspective.展开更多
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear mode...A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.展开更多
The Chinese east coastal areas and marginal seas are foggy regions. The development of effective forecasting methods rests upon a comprehensive knowledge of the fog phenomena. This study provides new observations asso...The Chinese east coastal areas and marginal seas are foggy regions. The development of effective forecasting methods rests upon a comprehensive knowledge of the fog phenomena. This study provides new observations associated with the sea togs over the northwestern Yellow Sea by means of L-band radar soundings with a high vertical resolution of 30m. The monthly tem- perature lapse rate, the Richardson Nulnbers, and the humidity show obvious seasonal variations in the lower level of the planetary boundary layer (PBL) that are related to the onset, peak and end of the Yellow Sea fog season. The typical pattern of stratification for the sea fog season in the northwestern Yellow Sea is that a stable layer of about 400 m thick caps a 150 m conditionally unstable layer Besides, the differences between togs and stratus clouds in terms of humidity, turbulence and temperature are analyzed, which is of significance for sea fog forecast and detection by satellites. The thickness of the sea fogs varies in different stages of the fog season, and is associated with the temperature inversion. The numerical simulation proves that the seasonal variations obtained by the radar well represent the situations over the Yellow Sea.展开更多
Various satellite data,JRA-25(Japan reanalysis of 25 years) reanalyzed data and WRF(Weather Research Forecast) model are used to investigate the in situ effect of the ESKF(East China Sea Kuroshio Front) on the MABL(ma...Various satellite data,JRA-25(Japan reanalysis of 25 years) reanalyzed data and WRF(Weather Research Forecast) model are used to investigate the in situ effect of the ESKF(East China Sea Kuroshio Front) on the MABL(marine atmospheric boundary layer).The intensity of the ESKF is most robust from January to April in its annual cycle.The local strong surface northerly/northeasterly winds are observed right over the ESKF in January and in April and the wind speeds decrease upward in the MABL.The thermal wind effect that is derived from the baroclinic MABL forced by the strong SST gradient contributes to the strong surface winds to a large degree.The convergence zone existing along the warm flank of the ESKF is stronger in April than in January corresponding to the steeper SST(sea surface temperature) gradient.The collocations of the cloud cover maximum and precipitation maximum are basically consistent with the convergence zone of the wind field.The clouds develop higher(lower) in the warm(cold) flank of the ESKF due to the less(more) stable stratification in the MABL.The lowest clouds are observed in April on the cold flank of the ESKF and over the Yellow Sea due to the existence of the pronounced temperature inversion.The numerical experiments with smoothed SST are consistent with the results from the ovservations.展开更多
The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily dur...The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily during May-June 1998 on board Research Vessels Kexue 1 and Shiyan 3. The MABL height is defined as the height at the lowest level where virtual potential temperature increases by 1 K from the surface. The results indicate that the MABL height decreased over the northern South China Sea (SCS) and remained the same over the southern SCS, as sea surface temperature (SST) fell for the northern and rose for the southern SCS after the monsoon onset. Over the northern SCS, a decrease in both the SST and the surface latent-heat flux after the onset resulted in a reduction of the MABL height as well as a decoupling of MABL from clouds. It was found that MABL height reduction corresponded to rainfall occurrence. Over the southern SCS, a probable reason for the constant increase of SST and surface heat flux was the rainfall and internal atmospheric dynamics.展开更多
The Biogeochemical-Argo (BGC-Argo) Program aims at operating a network of profiling floats equipped with sensors of key biogeochemical variables for support- ing research activities that address impacts of climate c...The Biogeochemical-Argo (BGC-Argo) Program aims at operating a network of profiling floats equipped with sensors of key biogeochemical variables for support- ing research activities that address impacts of climate change on oceanic biogeochemical cycles and ecosystems (Claustre et al. 2010; IOCCG 2011; Johnson et al. 2009).展开更多
This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the devel...This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the development of atmospheric observational techniques and equipments,new facts about sea fog are revealed.The mechanisms involved in the formation,development and dissipation of sea fog are further explored with the help of advanced atmospheric models.展开更多
During the 134 (1996 1997) and the 19th (2002-2003) Chinese National Antarctica Research Expeditions, we collected 60 discrete surface seawater samples along the cruise from the Chanjiang River (Yangtze) estuary...During the 134 (1996 1997) and the 19th (2002-2003) Chinese National Antarctica Research Expeditions, we collected 60 discrete surface seawater samples along the cruise from the Chanjiang River (Yangtze) estuary (30^.59%, 122^.26'E) through Taiwan Strait, the South China Sea, and the Eastern Indian Ocean to Prydz Bay, Antarctica (69^.10'S, 74^.30'E), and analyzed them for the 226Ra specific activity. The 226Ra specific activity of the Chanjiang River estuary surface water (3.15 Bq/m3) was found to be the highest among all the surface samples because of the desorption of 226Ra from riverine particles. Between Chanjiang River estuary and 40^.S, 226Ra specific activity was found to be relatively uniform with a mean value of 1.07 Bq/m3 (n= 19, SD=0.14), similar to that of the open ocean. From 40^.S to 65^.S, 226Ra specific activity increased intensively, then decreased moderately further southwards. Near the Antarctic shore, it increased again, to 2.31 Bq/m3. This distribution was controlled by a combination of deep water upwelling, Southern Ocean fronts, water mixing and the continental 226Ra import. In Prydz Bay and the adjacent sea area, the mean 226Ra activity value was 2.26 Bq/m3 (n=31, SD=0.28), with a relatively higher value outside of the bay and low 226Ra activity value in the center of the bay. This was consistent with the topography and hydrological setting of the bay. In addition, we extended the study area northward to the Arctic, by combining the published Z26Ra dataset for surface water from the Bering Sea to the Japan Sea. We also discuss the 226Ra distribution of high latitude oceanic surface water and its mechanisms.展开更多
Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio(ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front(E...Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio(ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front(ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting(WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer(MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.展开更多
Whitecapping plays an important role in many air-sea exchange and upper ocean processes.Traditionally,whitecap coverage is parameterized as a function of wind speed only.At present,the relative speed of ocean current ...Whitecapping plays an important role in many air-sea exchange and upper ocean processes.Traditionally,whitecap coverage is parameterized as a function of wind speed only.At present,the relative speed of ocean current to wind is considered to be important in the air-sea exchange parameterization which is the function of wind speed only.In this paper,the effects of ocean surface velocity (current velocity and wave induced velocity) and the wave parameters on whitecap coverage through relative speeds are investigated,by applying a 2-parameter whitecap coverage model to the Atlantic Ocean.It is found that the impacts of both current and wave on whitecap coverage are considerable in the most part of the Atlantic Ocean.It is interesting that the effect of wave is more significant than that of current.展开更多
The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization...The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization of this three-layer model is presented, which was used to calculate the air-sea fluxes of acetone over the Pacific Ocean. The air-sea fluxes of acetone calculated by the three-layer model are in the same direction but possess half the magnitude of the fluxes calculated by the traditional two-layer model in the absence of photochemical and biological processes. However, photochemical and biological processes impacting acetone in the microlayer can greatly vary the calculated fluxes in the three-layer model, even reversing their direction under favorable conditions. Our model may help explain the discrepancies between measured and calculated acetone fluxes in previous studies. More measurements are needed to validate our conceptual model and provide constraints on the model parameters.展开更多
The atmospheric vertical structure and changed characteristics of boundary layer parameters, as well as their relations with sea ice and temperature changes in the center of Arctic Ocean(80°–88°N) are prese...The atmospheric vertical structure and changed characteristics of boundary layer parameters, as well as their relations with sea ice and temperature changes in the center of Arctic Ocean(80°–88°N) are presented by adopting GPS sounding data obtained by the 4th–6th Arctic expeditions of China and NCEP(National Centre for Environmental Prediction) reanalysis data. Obvious differences are observed regarding the tropopause, boundary layer height, temperature inversion, and vertical structure of wind speed and direction in the center Arctic Ocean in the summer of 2012, 2010, and 2014. These differences can be explained by the relations between temperature and changes in sea ice extent in September from 1979 to 2014. In September 2012, the Arctic sea ice extent decreased by 44% an with obvious warming process. In September 2010 and 2014, it decreased by 22.6% and 17% with an obvious cooling process, respectively. A comparison of the two processes shows that sea ice change has a significant influence on the structure of the atmospheric boundary layer. In the recent 30 years, the temperature changes of 1000 and 850 h Pa in the center of the Arctic Ocean have displayed an obvious warming trend and negative correlation with sea ice extent. These changes indicate that the continuous reduction of Arctic sea ice will continue the warming of the troposphere middle layer.展开更多
Artificial upwelling, as a geoengineering tool, has received worldwide attention because it may actualize ocean fertilization in a sustainable way, which could potentially alleviate the pressures on the fish stocks an...Artificial upwelling, as a geoengineering tool, has received worldwide attention because it may actualize ocean fertilization in a sustainable way, which could potentially alleviate the pressures on the fish stocks and human-driven climate change in the ocean. We reviewed the current knowledge on the development of an artificial upwelling system and its potential environmental effects. Special attention was given to the research progress on the air-lift concept artificial upwelling by Zhejiang University. The research on artificial upwelling over the past few decades has generated a range of devices that have been successfully applied in the field for months. Based on field experiments and the associated modeling results, part of them reported positive effects on increasing primary production and enhancing CO2 sequestration. However, as a significant disturbance to the environment, especially for large-scale applications, the uncertainties related to the potential effects on ecosystem remain unsolved. Zhejiang University has overcome the technical challenges in designing and fabricating a robust and high efficiency artificial upwelling device which has been examined in two field experiments in Qiandao Lake and one sea trial in the East China Sea. It was investigated that cold and hypoxic deep ocean water(DOW) could be uplifted to the euphotic layer, which could potentially change the nutrient distribution and adjust the N/P ratio. Both simulation and field experiments results confirmed that utilizing self-powered energy to inject compressed air to uplift DOW was a valid and efficient method. Therefore, further field-based research on artificial upwelling, especially for long-term field research is required to test the scientific hypothesis.展开更多
基金supported by the National Key R&D Program of China[grant number 2016YFA0600704]the External Cooperation Program of BIC,Chinese Academy of Sciences[grant number 134111KYSB20150016]+1 种基金the National Natural Science Foundation of China[grant number 41775076]Youth Innovation Promotion Association CAS
文摘Using a regional climate model(RCM) is generally regarded as a promising approach in researching the climate of the Tibetan Plateau, due to the advantages provided by the high resolutions of these models. Whilst previous studies have focused mostly on individual RCM simulations, here, multiple RCMs from the Coordinated Regional Climate Downscaling Experiment are evaluated in simulating surface air temperature and precipitation changes over the Tibetan Plateau using station and gridded observations. The results show the following:(1) All RCMs consistently show similar spatial patterns, but a mean cold(wet) bias in the temperature(precipitation) climatology compared to station observations. The RCMs fail to reproduce the observed spatial patterns of temperature and precipitation trends, and on average produce greater trends in temperature and smaller trends in precipitation than observed results. The multi-model ensemble overall produces superior trends in both simulated temperature and precipitation relative to individual models. Meanwhile, Reg CM4 presents the most reasonable simulated trends among the five RCMs.(2) Considerable dissimilarities are shown in the simulated quantitative results from the different RCMs, which indicates a large model dependency in the simulation of climate over the Tibetan Plateau. This implies that caution may be needed when an individual RCM is used to estimate the amplitude of climate change over the Tibetan Plateau.(3) The temperature(precipitation) in 2016–35, relative to 1986–2005, is projected by the multi-model ensemble to increase by 1.38 ± 0.09 °C(0.8% ± 4.0%) and 1.77 ± 0.28 °C(7.3% ± 2.5%) under the RCP4.5 and RCP8.5 scenario, respectively. The results of this study advance our understanding of the applicability of RCMs in studies of climate change over the Tibetan Plateau from a multiple-RCM perspective.
基金Under the auspices of National Natural Science Foundation of China (No. 40676016, No. 10471039)National Key Project for Basics Research (No. 2003CB415101-03, No. 2004CB418304)+1 种基金Key Project of Chinese Academy of Sciences (No. KZCX3-SW-221)E-Insitutes of Shanghai Municipal Education Commission (No. E03004)
文摘A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.
基金the National Scientific and Technological R&D Program Nos 2006AA09Z149,GYHY200706031the Scientific and Technological R&D Program of Qingdao No05-2-NS-35
文摘The Chinese east coastal areas and marginal seas are foggy regions. The development of effective forecasting methods rests upon a comprehensive knowledge of the fog phenomena. This study provides new observations associated with the sea togs over the northwestern Yellow Sea by means of L-band radar soundings with a high vertical resolution of 30m. The monthly tem- perature lapse rate, the Richardson Nulnbers, and the humidity show obvious seasonal variations in the lower level of the planetary boundary layer (PBL) that are related to the onset, peak and end of the Yellow Sea fog season. The typical pattern of stratification for the sea fog season in the northwestern Yellow Sea is that a stable layer of about 400 m thick caps a 150 m conditionally unstable layer Besides, the differences between togs and stratus clouds in terms of humidity, turbulence and temperature are analyzed, which is of significance for sea fog forecast and detection by satellites. The thickness of the sea fogs varies in different stages of the fog season, and is associated with the temperature inversion. The numerical simulation proves that the seasonal variations obtained by the radar well represent the situations over the Yellow Sea.
基金supported by the National Natural Science Foundation of China (No.40975003)the Ph.D.Programs Foundation of Ministry of Education of China (No.20090132110008)GYHY(QX)2007-6-31
文摘Various satellite data,JRA-25(Japan reanalysis of 25 years) reanalyzed data and WRF(Weather Research Forecast) model are used to investigate the in situ effect of the ESKF(East China Sea Kuroshio Front) on the MABL(marine atmospheric boundary layer).The intensity of the ESKF is most robust from January to April in its annual cycle.The local strong surface northerly/northeasterly winds are observed right over the ESKF in January and in April and the wind speeds decrease upward in the MABL.The thermal wind effect that is derived from the baroclinic MABL forced by the strong SST gradient contributes to the strong surface winds to a large degree.The convergence zone existing along the warm flank of the ESKF is stronger in April than in January corresponding to the steeper SST(sea surface temperature) gradient.The collocations of the cloud cover maximum and precipitation maximum are basically consistent with the convergence zone of the wind field.The clouds develop higher(lower) in the warm(cold) flank of the ESKF due to the less(more) stable stratification in the MABL.The lowest clouds are observed in April on the cold flank of the ESKF and over the Yellow Sea due to the existence of the pronounced temperature inversion.The numerical experiments with smoothed SST are consistent with the results from the ovservations.
基金supported by the Chinese Academy of Sciences (Grant No. KZCX1-YW-12-01)the National Natural Science Foundation of China (Grant Nos. U0733002 and 40876009)The National Basic Research Program of China (Grant No. 2011CB403504)
文摘The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily during May-June 1998 on board Research Vessels Kexue 1 and Shiyan 3. The MABL height is defined as the height at the lowest level where virtual potential temperature increases by 1 K from the surface. The results indicate that the MABL height decreased over the northern South China Sea (SCS) and remained the same over the southern SCS, as sea surface temperature (SST) fell for the northern and rose for the southern SCS after the monsoon onset. Over the northern SCS, a decrease in both the SST and the surface latent-heat flux after the onset resulted in a reduction of the MABL height as well as a decoupling of MABL from clouds. It was found that MABL height reduction corresponded to rainfall occurrence. Over the southern SCS, a probable reason for the constant increase of SST and surface heat flux was the rainfall and internal atmospheric dynamics.
基金supported by the Scientific Research Fundof the Second Institute of Oceanography,State Oceanic Administration[grant number 14283,QNYC1702]the Qingdao National Laboratory for Marine Science and Technology[grant number QNLM2016ORP0103]
文摘The Biogeochemical-Argo (BGC-Argo) Program aims at operating a network of profiling floats equipped with sensors of key biogeochemical variables for support- ing research activities that address impacts of climate change on oceanic biogeochemical cycles and ecosystems (Claustre et al. 2010; IOCCG 2011; Johnson et al. 2009).
基金supported by the National Natural Science Foundation of China (NSFC) (41175006)‘973 Program’(2012CB955602) and the Ministry of Education (MOE)(20090132110008)
文摘This review presents some of the latest achievements in sea fog research,including fog climatology,fog structure in the marine atmospheric boundary layer,and numerical simulations and forecasting of fog.With the development of atmospheric observational techniques and equipments,new facts about sea fog are revealed.The mechanisms involved in the formation,development and dissipation of sea fog are further explored with the help of advanced atmospheric models.
基金Supported by the National Natural Science Foundation of China(Nos.40706033 and 40806031)COMRA Program(Nos.DYXM-115-02-1-12 and DY115-01-2-5)
文摘During the 134 (1996 1997) and the 19th (2002-2003) Chinese National Antarctica Research Expeditions, we collected 60 discrete surface seawater samples along the cruise from the Chanjiang River (Yangtze) estuary (30^.59%, 122^.26'E) through Taiwan Strait, the South China Sea, and the Eastern Indian Ocean to Prydz Bay, Antarctica (69^.10'S, 74^.30'E), and analyzed them for the 226Ra specific activity. The 226Ra specific activity of the Chanjiang River estuary surface water (3.15 Bq/m3) was found to be the highest among all the surface samples because of the desorption of 226Ra from riverine particles. Between Chanjiang River estuary and 40^.S, 226Ra specific activity was found to be relatively uniform with a mean value of 1.07 Bq/m3 (n= 19, SD=0.14), similar to that of the open ocean. From 40^.S to 65^.S, 226Ra specific activity increased intensively, then decreased moderately further southwards. Near the Antarctic shore, it increased again, to 2.31 Bq/m3. This distribution was controlled by a combination of deep water upwelling, Southern Ocean fronts, water mixing and the continental 226Ra import. In Prydz Bay and the adjacent sea area, the mean 226Ra activity value was 2.26 Bq/m3 (n=31, SD=0.28), with a relatively higher value outside of the bay and low 226Ra activity value in the center of the bay. This was consistent with the topography and hydrological setting of the bay. In addition, we extended the study area northward to the Arctic, by combining the published Z26Ra dataset for surface water from the Bering Sea to the Japan Sea. We also discuss the 226Ra distribution of high latitude oceanic surface water and its mechanisms.
文摘Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio(ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front(ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting(WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer(MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.
基金Supported by Ministry of Science and Technology of China (Nos.2005CB422307 and 2006BAC03B01)National Natural Science Foundation of China (No.40830959)
文摘Whitecapping plays an important role in many air-sea exchange and upper ocean processes.Traditionally,whitecap coverage is parameterized as a function of wind speed only.At present,the relative speed of ocean current to wind is considered to be important in the air-sea exchange parameterization which is the function of wind speed only.In this paper,the effects of ocean surface velocity (current velocity and wave induced velocity) and the wave parameters on whitecap coverage through relative speeds are investigated,by applying a 2-parameter whitecap coverage model to the Atlantic Ocean.It is found that the impacts of both current and wave on whitecap coverage are considerable in the most part of the Atlantic Ocean.It is interesting that the effect of wave is more significant than that of current.
基金funded by the National Natural Science Foundation of China (Grant No. 41222035)
文摘The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization of this three-layer model is presented, which was used to calculate the air-sea fluxes of acetone over the Pacific Ocean. The air-sea fluxes of acetone calculated by the three-layer model are in the same direction but possess half the magnitude of the fluxes calculated by the traditional two-layer model in the absence of photochemical and biological processes. However, photochemical and biological processes impacting acetone in the microlayer can greatly vary the calculated fluxes in the three-layer model, even reversing their direction under favorable conditions. Our model may help explain the discrepancies between measured and calculated acetone fluxes in previous studies. More measurements are needed to validate our conceptual model and provide constraints on the model parameters.
基金supported by the Program of China Polar Environment Investigation and Assessment (2016–2020)by the Project of MOST 973 (Grant No. 2015CB953900)
文摘The atmospheric vertical structure and changed characteristics of boundary layer parameters, as well as their relations with sea ice and temperature changes in the center of Arctic Ocean(80°–88°N) are presented by adopting GPS sounding data obtained by the 4th–6th Arctic expeditions of China and NCEP(National Centre for Environmental Prediction) reanalysis data. Obvious differences are observed regarding the tropopause, boundary layer height, temperature inversion, and vertical structure of wind speed and direction in the center Arctic Ocean in the summer of 2012, 2010, and 2014. These differences can be explained by the relations between temperature and changes in sea ice extent in September from 1979 to 2014. In September 2012, the Arctic sea ice extent decreased by 44% an with obvious warming process. In September 2010 and 2014, it decreased by 22.6% and 17% with an obvious cooling process, respectively. A comparison of the two processes shows that sea ice change has a significant influence on the structure of the atmospheric boundary layer. In the recent 30 years, the temperature changes of 1000 and 850 h Pa in the center of the Arctic Ocean have displayed an obvious warming trend and negative correlation with sea ice extent. These changes indicate that the continuous reduction of Arctic sea ice will continue the warming of the troposphere middle layer.
基金financially funded by the National Natural Science Foundation of China(Grant Nos.51120195001&51205346)the Program for Zhejiang Leading Team of S&T Innovation(Grant No.2010R50036)+1 种基金the Public Welfare Project of Science Technology Department of Zhejiang ProvinceChina(Grant No.2015C31096)
文摘Artificial upwelling, as a geoengineering tool, has received worldwide attention because it may actualize ocean fertilization in a sustainable way, which could potentially alleviate the pressures on the fish stocks and human-driven climate change in the ocean. We reviewed the current knowledge on the development of an artificial upwelling system and its potential environmental effects. Special attention was given to the research progress on the air-lift concept artificial upwelling by Zhejiang University. The research on artificial upwelling over the past few decades has generated a range of devices that have been successfully applied in the field for months. Based on field experiments and the associated modeling results, part of them reported positive effects on increasing primary production and enhancing CO2 sequestration. However, as a significant disturbance to the environment, especially for large-scale applications, the uncertainties related to the potential effects on ecosystem remain unsolved. Zhejiang University has overcome the technical challenges in designing and fabricating a robust and high efficiency artificial upwelling device which has been examined in two field experiments in Qiandao Lake and one sea trial in the East China Sea. It was investigated that cold and hypoxic deep ocean water(DOW) could be uplifted to the euphotic layer, which could potentially change the nutrient distribution and adjust the N/P ratio. Both simulation and field experiments results confirmed that utilizing self-powered energy to inject compressed air to uplift DOW was a valid and efficient method. Therefore, further field-based research on artificial upwelling, especially for long-term field research is required to test the scientific hypothesis.