The conventional structures in the Switched Reluctance machines are introduced, such as three-phase 12/8 structure Switched Reluctance machine, three-phase 6/4 structure Switched Reluctance machine, four-phase 16/12 s...The conventional structures in the Switched Reluctance machines are introduced, such as three-phase 12/8 structure Switched Reluctance machine, three-phase 6/4 structure Switched Reluctance machine, four-phase 16/12 structure Switched Reluctance machine, and four-phase 8/6 structure Switched Reluctance machine. Three-phase 12/8 structure Switched Reluctance machine is the best choice for the large power Switched Reluctance machine system in coal mines. The asymmetric bridge power converter main circuit and the bifilar winding power converter main circuit are also introduced. Three-phase asymmetric bridge power converter main circuit is the best choice for the large power Switched Reluctance machine system in coal mines. The magnetic paths of the designed large power motor are given with one phase excitation and double phases excitation. The phase current waveforms are also given.展开更多
In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups ma...In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups may have characteristics of the main out-of-step mode and the minor out-of-step mode. The generator groups with main out-of-step modes can determine the out-of-step interface of the large-scale power system,while generators with the minor out-of-step modes cannot play such a role. Therefore,the method of capturing the out-of-step interface by seeking the lowest voltage point(the out-of-step center) can only group the generators with the main out-of-step modes,and may fail to combine the generators with the minor out-of-step modes into proper coherent generator groups. Thus,it is necessary in engineering applications to equip the generators that are likely to have the characteristics of the minor out-of-step modes with separation devices based on off-line simulation studies in order to reduce the risk of further accidents caused by these generators after system separation.展开更多
Based on the measured data of geomagnetically induced currents (GIC) in Guangdong Ling' ao 500 kV power networks during several magnetic storms at the peak years of 23rd Solar Cycle, the GIC calculation results of ...Based on the measured data of geomagnetically induced currents (GIC) in Guangdong Ling' ao 500 kV power networks during several magnetic storms at the peak years of 23rd Solar Cycle, the GIC calculation results of 750 kV planning power grid in Shartxi, Gansu, Qinghai and Ningxia, the structure and characteristics of power networks from 500 kV to 1 000 kV, and super magnetic storm in 1859 are analyzed in this paper. Through the analysis, the possible impacts of extreme space weather on the future ultra-high voltage (UHV) grid, the security of large-scale power system in China are expounded, and the research suggestions coping with the strong solar storms are proposed.展开更多
The modeling of PV (photovoltaic) systems is very crucial for embedded power system applications and maximum power point tracking. This paper presents a PV array model using Matlab/Simulink with the assistance of Si...The modeling of PV (photovoltaic) systems is very crucial for embedded power system applications and maximum power point tracking. This paper presents a PV array model using Matlab/Simulink with the assistance of SimPowerSystem toolbox. The PV cell is considered as the main building block for simulating and monitoring the PV array performance. The PV model has been developed and used as Simulink subsystems where the effect of solar insolation and PV array temperature on commercial PV modules have been studied throughout the simulated I-V and P-V output characteristics. The proposed model facilitates simulating the dynamic performance of PV-based power systems. The effect of different partial shading patterns of PV arrays under different configurations has been studied.展开更多
The reliability plays an important role in power electronic systems by which the number of system failures, repair costs, guarantee and etc. are estimated. In this paper first, a boost Maximum Power Point Tracker (M...The reliability plays an important role in power electronic systems by which the number of system failures, repair costs, guarantee and etc. are estimated. In this paper first, a boost Maximum Power Point Tracker (MPPT) converter is simulated in Discontinues Conduction Mode (DCM) and Continuous Conduction Mode (CCM) under different output power ratings. For these simulations, all of the inherent parameters of MOSFET and diodes are applied according to the actual types. Then, reliability calculation is done based on MIL-HDBK-217 handbook. Results have shown that the MPPT converter would have better performance from reliability point of view in CCM operating mode.展开更多
基金Project 2008DFA61870 supported by the International S&T Cooperation Program of Chinathe Project [2008]221-12-1 supported by the Chinese-Bulgarian Scientific and Technological Cooperation Project
文摘The conventional structures in the Switched Reluctance machines are introduced, such as three-phase 12/8 structure Switched Reluctance machine, three-phase 6/4 structure Switched Reluctance machine, four-phase 16/12 structure Switched Reluctance machine, and four-phase 8/6 structure Switched Reluctance machine. Three-phase 12/8 structure Switched Reluctance machine is the best choice for the large power Switched Reluctance machine system in coal mines. The asymmetric bridge power converter main circuit and the bifilar winding power converter main circuit are also introduced. Three-phase asymmetric bridge power converter main circuit is the best choice for the large power Switched Reluctance machine system in coal mines. The magnetic paths of the designed large power motor are given with one phase excitation and double phases excitation. The phase current waveforms are also given.
基金Project (No. 50277034) supported by the National Natural ScienceFoundation of China
文摘In this paper,two new concepts—“main out-of-step mode” and “minor out-of-step mode”—are proposed for power system reliability analysis. Large-scale power system studies found that out-of-step generator groups may have characteristics of the main out-of-step mode and the minor out-of-step mode. The generator groups with main out-of-step modes can determine the out-of-step interface of the large-scale power system,while generators with the minor out-of-step modes cannot play such a role. Therefore,the method of capturing the out-of-step interface by seeking the lowest voltage point(the out-of-step center) can only group the generators with the main out-of-step modes,and may fail to combine the generators with the minor out-of-step modes into proper coherent generator groups. Thus,it is necessary in engineering applications to equip the generators that are likely to have the characteristics of the minor out-of-step modes with separation devices based on off-line simulation studies in order to reduce the risk of further accidents caused by these generators after system separation.
基金National Nature Science Foundation of China (No.50477039 No.50677020)National High Technology Research and Development Program of China("863"Program) (No.2007AA04Z425)
文摘Based on the measured data of geomagnetically induced currents (GIC) in Guangdong Ling' ao 500 kV power networks during several magnetic storms at the peak years of 23rd Solar Cycle, the GIC calculation results of 750 kV planning power grid in Shartxi, Gansu, Qinghai and Ningxia, the structure and characteristics of power networks from 500 kV to 1 000 kV, and super magnetic storm in 1859 are analyzed in this paper. Through the analysis, the possible impacts of extreme space weather on the future ultra-high voltage (UHV) grid, the security of large-scale power system in China are expounded, and the research suggestions coping with the strong solar storms are proposed.
文摘The modeling of PV (photovoltaic) systems is very crucial for embedded power system applications and maximum power point tracking. This paper presents a PV array model using Matlab/Simulink with the assistance of SimPowerSystem toolbox. The PV cell is considered as the main building block for simulating and monitoring the PV array performance. The PV model has been developed and used as Simulink subsystems where the effect of solar insolation and PV array temperature on commercial PV modules have been studied throughout the simulated I-V and P-V output characteristics. The proposed model facilitates simulating the dynamic performance of PV-based power systems. The effect of different partial shading patterns of PV arrays under different configurations has been studied.
文摘The reliability plays an important role in power electronic systems by which the number of system failures, repair costs, guarantee and etc. are estimated. In this paper first, a boost Maximum Power Point Tracker (MPPT) converter is simulated in Discontinues Conduction Mode (DCM) and Continuous Conduction Mode (CCM) under different output power ratings. For these simulations, all of the inherent parameters of MOSFET and diodes are applied according to the actual types. Then, reliability calculation is done based on MIL-HDBK-217 handbook. Results have shown that the MPPT converter would have better performance from reliability point of view in CCM operating mode.