白鲨优化算法是受白鲨捕猎行为的启发设计的一种新元启发式算法。该算法在求解高维优化问题时,易进入早熟状态,寻优结果精度较低。为此,文章提出一种改进的白鲨优化(improved white shake optimizer,IWSO)算法。首先使用Sinusoidal混沌...白鲨优化算法是受白鲨捕猎行为的启发设计的一种新元启发式算法。该算法在求解高维优化问题时,易进入早熟状态,寻优结果精度较低。为此,文章提出一种改进的白鲨优化(improved white shake optimizer,IWSO)算法。首先使用Sinusoidal混沌映射初始化种群,以提高种群多样性及初始解在解空间的分布性;其次,引入鸟群搜索行为,赋予白鲨游动速度自适应动态惯性权重,以提高算法的收敛速度;最后,在位置更新阶段引入精英白鲨余弦变异策略,利用余弦函数的周期性特征,驱使白鲨个体在精英白鲨的有限邻域内进行精细化开发,以提高收敛精度。在23个著名基准函数和CEC2014函数上做了性能对比实验,其结果表明,IWSO算法优于6种对比算法,适合求解函数优化问题。展开更多
文摘白鲨优化算法是受白鲨捕猎行为的启发设计的一种新元启发式算法。该算法在求解高维优化问题时,易进入早熟状态,寻优结果精度较低。为此,文章提出一种改进的白鲨优化(improved white shake optimizer,IWSO)算法。首先使用Sinusoidal混沌映射初始化种群,以提高种群多样性及初始解在解空间的分布性;其次,引入鸟群搜索行为,赋予白鲨游动速度自适应动态惯性权重,以提高算法的收敛速度;最后,在位置更新阶段引入精英白鲨余弦变异策略,利用余弦函数的周期性特征,驱使白鲨个体在精英白鲨的有限邻域内进行精细化开发,以提高收敛精度。在23个著名基准函数和CEC2014函数上做了性能对比实验,其结果表明,IWSO算法优于6种对比算法,适合求解函数优化问题。