Leaf cuticle analysis has long been a powerful tool for fossil plant identification, systematics, and palaeoclimatological recon- struction. In recent decades the application of stomatal frequency data that are relied...Leaf cuticle analysis has long been a powerful tool for fossil plant identification, systematics, and palaeoclimatological recon- struction. In recent decades the application of stomatal frequency data that are relied on precise calculation of stomata on plant fossil cuticles to reconstruct ancient atmospheric CO2 concentration made the preparation of cuticular membrane with sufficient size a critical technique in palaeoclimatological research. However, for plants with originally thin and fragile cuticles, e.g., most deciduous plants, conventional techniques sometimes fail to obtain cuticular membranes with sufficient size, or sometimes unable to recover any. This has largely hampered the usage of fossil cuticle analysis in palaeobotanical and palaeo- climatological research. Here, we describe a new method using clear nail polish as a medium to "strengthen" the originally thin and fragile cuticles prior to maceration procedures. We demonstrate the method by using middle Eocene Metasequoia fossils that were notorious for the difficulty of recovering large-sized clean cuticular membranes due to their thin and fragile nature. Metasequoia, with well-documented and widely-distributed fossil records since the Late Cretaceous and with a living repre- sentative, 114. glyptostroboides, as a comparative reference, bas been widely used as a model genus for the study of evolution of plants, palaeoclimatological reconstruction, and plant adaptation to climate changes. But its deciduous habit produces thin cuticles and makes the preparation of clean cuticular membranes a tedious process. The new method successfully allows us to recover its delicate cuticular membranes with sufficient sizes for SEM observation and stomatal frequency analysis.展开更多
基金supported by CAS/SAFEA International Partnership Program for Creative Research Teams,the Pilot Project of Knowledge Innovation of CAS (Grant No. KZCX2-YW-105)National Basic Research Program of China (Grant No. 2006CB806400)National Natural Science Foundation of China (Grant Nos. 40402002,40872011)
文摘Leaf cuticle analysis has long been a powerful tool for fossil plant identification, systematics, and palaeoclimatological recon- struction. In recent decades the application of stomatal frequency data that are relied on precise calculation of stomata on plant fossil cuticles to reconstruct ancient atmospheric CO2 concentration made the preparation of cuticular membrane with sufficient size a critical technique in palaeoclimatological research. However, for plants with originally thin and fragile cuticles, e.g., most deciduous plants, conventional techniques sometimes fail to obtain cuticular membranes with sufficient size, or sometimes unable to recover any. This has largely hampered the usage of fossil cuticle analysis in palaeobotanical and palaeo- climatological research. Here, we describe a new method using clear nail polish as a medium to "strengthen" the originally thin and fragile cuticles prior to maceration procedures. We demonstrate the method by using middle Eocene Metasequoia fossils that were notorious for the difficulty of recovering large-sized clean cuticular membranes due to their thin and fragile nature. Metasequoia, with well-documented and widely-distributed fossil records since the Late Cretaceous and with a living repre- sentative, 114. glyptostroboides, as a comparative reference, bas been widely used as a model genus for the study of evolution of plants, palaeoclimatological reconstruction, and plant adaptation to climate changes. But its deciduous habit produces thin cuticles and makes the preparation of clean cuticular membranes a tedious process. The new method successfully allows us to recover its delicate cuticular membranes with sufficient sizes for SEM observation and stomatal frequency analysis.