期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习和资产特征的投资组合选择研究 被引量:1
1
作者 李斌 屠雪永 《系统工程理论与实践》 EI CSCD 北大核心 2024年第1期338-355,共18页
随着可投资资产与资产信息的爆炸式增长,投资组合选择研究面临资产和特征双重高维挑战.为此,本文提出一个基于机器学习和资产特征的投资组合选择框架,该框架借助机器学习技术的天然优势,运用高维特征直接预测投资组合权重,避开了常规的... 随着可投资资产与资产信息的爆炸式增长,投资组合选择研究面临资产和特征双重高维挑战.为此,本文提出一个基于机器学习和资产特征的投资组合选择框架,该框架借助机器学习技术的天然优势,运用高维特征直接预测投资组合权重,避开了常规的两步投资组合管理范式中的收益预测过程,并用于中国股票市场的资产配置研究.结果显示:1)基于此框架提出的投资策略能够捕捉高维特征中的增量信息,并挖掘资产特征与投资权重之间线性与非线性关系,大幅提升了投资绩效;2)交易摩擦类特征是投资权重预测中最为重要的资产特征;3)策略在套利限制较为严重的股票上回报更高,而对宏观经济状态变化的敏感性较低;在其他经济约束下,策略表现依然稳健.本文拓展了现代投资组合理论的研究框架,促进了人工智能与量化投资领域的交叉融合发展. 展开更多
关键词 投资组合选择 人工智能 资产特征 大维资产配置 量化投资
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部