Four arsenic-resistance genes(arsB,arsC,arsH,arsR) have been discovered in Acidithiobacillus ferrooxidans.Their gene sequences have been identified and three different arsenic-resistance mechanisms have been elucidate...Four arsenic-resistance genes(arsB,arsC,arsH,arsR) have been discovered in Acidithiobacillus ferrooxidans.Their gene sequences have been identified and three different arsenic-resistance mechanisms have been elucidated.However,the function of the arsH gene in At.ferrooxidans remains unclear.In order to evaluate the function of the arsH gene,we cloned it and expressed it in Escherichia coli.The protein was purified and its relative molecular mass was determined by SDS-PAGE(Sodium dodecyl sulfate-polyacrylamide gel electrophoresis).The results indicated that the relative molecular mass of the purified ArsH was approximately 29 kDa.The purified protein ArsH from E.coli BL21 was a flavoprotein that oxidized in vitro NADPH with an optimal pH of 6.4.展开更多
基金Project(50621063) supported by the National Natural Science Foundation of ChinaProject(2004CB619201) supported by the National Basic Research Program of China
文摘Four arsenic-resistance genes(arsB,arsC,arsH,arsR) have been discovered in Acidithiobacillus ferrooxidans.Their gene sequences have been identified and three different arsenic-resistance mechanisms have been elucidated.However,the function of the arsH gene in At.ferrooxidans remains unclear.In order to evaluate the function of the arsH gene,we cloned it and expressed it in Escherichia coli.The protein was purified and its relative molecular mass was determined by SDS-PAGE(Sodium dodecyl sulfate-polyacrylamide gel electrophoresis).The results indicated that the relative molecular mass of the purified ArsH was approximately 29 kDa.The purified protein ArsH from E.coli BL21 was a flavoprotein that oxidized in vitro NADPH with an optimal pH of 6.4.