期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
针灸联合核心训练对脑卒中偏瘫患者大脑神经功能、肌电图特征及平衡能力的影响
1
作者 康雄 张万钧 《现代中医药》 CAS 2024年第3期73-77,共5页
目的观察针灸联合核心训练对脑卒中偏瘫患者大脑神经功能、肌电图特征及平衡能力的影响。方法选取西北大学附属神木医院2020年3月—2022年12月收治的脑卒中偏瘫患者86例进行前瞻性研究。采用随机数字表法将所有患者分为观察组(43例)及... 目的观察针灸联合核心训练对脑卒中偏瘫患者大脑神经功能、肌电图特征及平衡能力的影响。方法选取西北大学附属神木医院2020年3月—2022年12月收治的脑卒中偏瘫患者86例进行前瞻性研究。采用随机数字表法将所有患者分为观察组(43例)及对照组(43例),对照组采用核心训练,观察组采用针灸联合核心训练,对比两组治疗前后日常生活能力Barthel指数(BI)、神经功能评分(NIHSS)及平衡功能评分(BBS)、肌电图特征、血清神经元特异性烯醇化酶(NSE)、脑源性神经营养因子(BDNF)、S-100β蛋白(S-100β)及中医症候评分。结果治疗后观察组半身不遂、口眼歪斜、言语不利各项评分均低于治疗前及对照组治疗后(P<0.05);治疗后两组NIHSS评分均显著降低,观察组低于对照组(P<0.05);BBS、BI评分明显高于治疗前及对照组治疗后(P<0.05);两组患者治疗后血清NSE、BDNF、S-100β水平较治疗前明显下降,且观察组NSE、BDNF、S-100β水平显著低于对照组(P<0.05);两组患者治疗后股四头肌、胫骨前肌、腓肠肌均方根振幅(RMS)水平显著低于治疗前,且观察组显著低于对照组(P<0.05)。结论中医针灸联合核心训练能提高脑卒中偏瘫患者平衡功能,促进患者脑神经功能恢复,提高股四头肌、胫骨前肌与腓肠肌运动功能。 展开更多
关键词 中医针灸 大脑神经功能 核心训练 脑卒中偏瘫 肌电图特征
下载PDF
大脑神经功能的缺失对艺术创造力的影响
2
作者 周美玉 杨晓文 《设计》 2013年第11期165-166,共2页
塞米尔.泽基认为任何美学理论都必须建立在神经生物学的基础之上,大脑的神经机制对审美活动产生了重要的作用。通常情况下,大脑的优势半球始终抑制着对侧,让它"安分守己"地发挥自己的作用,彼此维持一种平衡的状态,如果特定区... 塞米尔.泽基认为任何美学理论都必须建立在神经生物学的基础之上,大脑的神经机制对审美活动产生了重要的作用。通常情况下,大脑的优势半球始终抑制着对侧,让它"安分守己"地发挥自己的作用,彼此维持一种平衡的状态,如果特定区域受到损伤,它就会事情对对侧的抑制作用,对侧的功能就会在失控的状态下,有非同寻常的发挥。文本通过几个案例研究了大脑神经功能的缺失对艺术创造力的影响。 展开更多
关键词 大脑神经功能艺术创造力
下载PDF
中西医结合针灸治疗改善肝病患者睡眠质量的疗效观察
3
作者 冉函予 《中文科技期刊数据库(引文版)医药卫生》 2024年第6期0085-0088,共4页
通过观察中西医结合针灸治疗对改善肝病患者睡眠质量的疗效。方法 将132名肝病患者随机分为调研组和对照组各66人,对照组接受常规治疗,调研组在常规治疗的基础上增加中西医结合针灸治疗。结果 治疗后调研组患者总有效率96.88%,对照组63.... 通过观察中西医结合针灸治疗对改善肝病患者睡眠质量的疗效。方法 将132名肝病患者随机分为调研组和对照组各66人,对照组接受常规治疗,调研组在常规治疗的基础上增加中西医结合针灸治疗。结果 治疗后调研组患者总有效率96.88%,对照组63.64%,两组总有效率比较差异显著(P <0.05);治疗前调研组和对照组睡眠质量评分无显著差异,治疗后调研组睡眠质量评分(9.81±1.78)优于对照组(11.21±2.22),两组对比差异显著(P <0.05);治疗前两组患者大脑神经功能评分无显著差异,治疗后调研组的大脑神经功能评分(1.20±0.59)明显优于对照组(4.30±0.66),两组对比,差异显著(P <0.05)。结论 中西医结合针灸治疗能够明显提升肝病患者的疗效,改善其睡眠质量,对大脑神经功能有显著改善作用,临床应用价值高。 展开更多
关键词 中西医结合 针灸治疗 肝病 睡眠质量 大脑神经功能
下载PDF
EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION ON MOTOR CORTICAL EXCITABILITY AND NEUROFUNCTION AFTER CEREBRAL ISCHEMIA-REPERFUSION INJURY IN RATS 被引量:21
4
作者 Hong-lin Feng Li Yan Yu-zhou Guan Li-ying Cui 《Chinese Medical Sciences Journal》 CAS CSCD 2005年第4期226-230, ,共5页
Objective To clarify the effects of repetitive transcranial magnetic stimulation (rTMS) on rat motor cortical excitabi- lity and neurofunction after cerebral ischemia-reperfusion injury. Methods After determined awake... Objective To clarify the effects of repetitive transcranial magnetic stimulation (rTMS) on rat motor cortical excitabi- lity and neurofunction after cerebral ischemia-reperfusion injury. Methods After determined awake resting motor threshold (MT) and motor evoked potentials (MEPs) of right hindlimbs, 20 Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) reperfusion injury, then rTMS were applied to rTMS group (n = 10) at different time, while control group (n = 10) received no stimulation. A week later, MT and MEPs were evaluated again, as well as neurological deficits and infarct volume. The effects of rTMS and MCAO reperfusion injury on these parameters were analyzed. Results After MCAO reperfusion, both MT level and neurological deficit scores increased, distinct focal infarction formed, and latency of MEP elongated. Compared with the control group, the increased extent of MT and neurological scores of rats receiving rTMS were significantly lower (P < 0.05), as well as the infarct volumes reduced significantly(P < 0.05). But MEP was not affected by rTMS obviously. There was a positive linear correlation between postinjury MT and infarct volume (r = 0.64, P < 0.05). Conclusion rTMS may facilitate neurofunction recovery after cerebral ischemia-reperfusion. Postinjury MT could provide prognostic information after MCAO reperfusion injury. 展开更多
关键词 repetitive transcranial magnetic stimulation cerebral ischemia-reperfusion.injury motor threshold motor evoked potential
下载PDF
Systems Neuroengineering: Understanding and Interacting with the Brain 被引量:3
5
作者 Bradley J.Edelman Nessa Johnson +3 位作者 Abbas Sohrabpour Shanbao Tong Nitish Thakor Bin He 《Engineering》 SCIE EI 2015年第3期292-308,共17页
In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate co... In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders. 展开更多
关键词 systems neuroengineering NEUROIMAGING neural interface NEUROMODULATION NEUROTECHNOLOGY brain-computer interface brain-machine interface neural stimulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部