Objective: To observe the effect of acupuncture on cerebral glucose metabolism in stroke patients. Methods:Changes of cerebral glucose metabolism before and after acupuncture stimulation were observed in six cases of ...Objective: To observe the effect of acupuncture on cerebral glucose metabolism in stroke patients. Methods:Changes of cerebral glucose metabolism before and after acupuncture stimulation were observed in six cases of stroke patients by using positron emission tomography (PET) scanner. Elecrocacupuncture (EA,4 Hz, continuous waves and duration of 20 min) was applied to Baihui (百会 GV 20) and right Qubin (曲鬓 GB 7). 18 Fluorine deox yglucose (18FDG), a developer (radioactive form of glucose) for showing the levels of the brain functional activity was given to the patients intravenously. SPM software was used to deal with the data of each pixel point by unilateral t-test (Ts: P = 0.05), then, the regions showing increase/decrease of the glucose metabolism were obtained. Results: After acupuncture stimulation, significant increase of glucose metabolism was found to be in the first somatic motor cortical region (Ml), supplementary motor area (SMA), premotor area (PMC), and the superior parietal lobule (LPs) on the healthy side of the brain; while the decrease of glucose metabolism found in MI, PMC and LPs on the focus side. In addition to the cerebral regions related to the motor function, changes of glucose metabolism were also found in the parietal lobule and basal ganglion area, central parietal gyrus, superior parietal gyrus, putamen, cerebellum, etc. .Conclusion: Acupuncture of Qubin (GB 7) and Baihui (GV 20) can activate motor-related cerebral structures in the bilateral cerebral hemisphere and induce excitement reaction of the potentially correlative motor area so as to compensate or assist the injured motor area to play a role in improving motor function in stroke patients.展开更多
Physical activity can enhance cognitive function and increase resistance against deleterious effects of stress on mental health. Enhanced cognitive function and stress resistance produced by exercise are conserved amo...Physical activity can enhance cognitive function and increase resistance against deleterious effects of stress on mental health. Enhanced cognitive function and stress resistance produced by exercise are conserved among vertebrates, suggesting that ubiquitous mechanisms may underlie beneficial ef- fects of exercise. In the current review, we summarize the beneficial effects of exercise on cognitive function and stress resistance and discuss central and peripheral signaling factors that may be critical for conferring the effects of physical activity to brain circuits involved in cognitive function and stress. Additionally, it is suggested that norepinephrine and serotonin, highly conserved monoamines that are sensitive to exercise and able to modulate behavior in multiple species, could represent a conver- gence between peripheral and central exercise signals that mediate the beneficial effects of exercise. Finally, we offer the novel hypothesis that thermoregulation during exercise could contribute to the emotional effects of exercise by activating a subset of temperature-sensitive serotonergic neurons in the dorsal raphe nucleus that convey anxiolytic and stress-protective signals to forebrain regions. Throughout the review, we discuss limitations to current approaches and offer strategies for future re- search in exercise neuroscience.展开更多
文摘Objective: To observe the effect of acupuncture on cerebral glucose metabolism in stroke patients. Methods:Changes of cerebral glucose metabolism before and after acupuncture stimulation were observed in six cases of stroke patients by using positron emission tomography (PET) scanner. Elecrocacupuncture (EA,4 Hz, continuous waves and duration of 20 min) was applied to Baihui (百会 GV 20) and right Qubin (曲鬓 GB 7). 18 Fluorine deox yglucose (18FDG), a developer (radioactive form of glucose) for showing the levels of the brain functional activity was given to the patients intravenously. SPM software was used to deal with the data of each pixel point by unilateral t-test (Ts: P = 0.05), then, the regions showing increase/decrease of the glucose metabolism were obtained. Results: After acupuncture stimulation, significant increase of glucose metabolism was found to be in the first somatic motor cortical region (Ml), supplementary motor area (SMA), premotor area (PMC), and the superior parietal lobule (LPs) on the healthy side of the brain; while the decrease of glucose metabolism found in MI, PMC and LPs on the focus side. In addition to the cerebral regions related to the motor function, changes of glucose metabolism were also found in the parietal lobule and basal ganglion area, central parietal gyrus, superior parietal gyrus, putamen, cerebellum, etc. .Conclusion: Acupuncture of Qubin (GB 7) and Baihui (GV 20) can activate motor-related cerebral structures in the bilateral cerebral hemisphere and induce excitement reaction of the potentially correlative motor area so as to compensate or assist the injured motor area to play a role in improving motor function in stroke patients.
文摘Physical activity can enhance cognitive function and increase resistance against deleterious effects of stress on mental health. Enhanced cognitive function and stress resistance produced by exercise are conserved among vertebrates, suggesting that ubiquitous mechanisms may underlie beneficial ef- fects of exercise. In the current review, we summarize the beneficial effects of exercise on cognitive function and stress resistance and discuss central and peripheral signaling factors that may be critical for conferring the effects of physical activity to brain circuits involved in cognitive function and stress. Additionally, it is suggested that norepinephrine and serotonin, highly conserved monoamines that are sensitive to exercise and able to modulate behavior in multiple species, could represent a conver- gence between peripheral and central exercise signals that mediate the beneficial effects of exercise. Finally, we offer the novel hypothesis that thermoregulation during exercise could contribute to the emotional effects of exercise by activating a subset of temperature-sensitive serotonergic neurons in the dorsal raphe nucleus that convey anxiolytic and stress-protective signals to forebrain regions. Throughout the review, we discuss limitations to current approaches and offer strategies for future re- search in exercise neuroscience.