期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多重相似度和CatBoost的个性化推荐 被引量:1
1
作者 杨怀珍 张静 李雷 《计算机工程与设计》 北大核心 2023年第9期2687-2693,共7页
针对历史数据稀疏性导致推荐算法预测精度低的问题,提出基于多重相似度分析和CatBoost的推荐算法。利用修正的余弦相似度函数求解项目元数据和评分数据的相似矩阵并进行融合;采用大规模信息嵌入网络(large-scale information network em... 针对历史数据稀疏性导致推荐算法预测精度低的问题,提出基于多重相似度分析和CatBoost的推荐算法。利用修正的余弦相似度函数求解项目元数据和评分数据的相似矩阵并进行融合;采用大规模信息嵌入网络(large-scale information network embedding,LINE)对融合后的相似矩阵进行多阶相似性分析计算更精确的近邻集;以此作为CatBoost的输入预测项目评分并利用Top-N推荐项目。为验证其有效性,在MovieLens数据集上进行实验并与其它方法对比。实验结果表明,该方法具有更高的推荐精度、更强的稳定性,可解决历史数据稀疏性导致的推荐质量低的问题。 展开更多
关键词 个性化推荐 集成学习 元数据 数据融合 相似度 修正的余弦相似度函数 大规模信息嵌入网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部