期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合孤立森林和局部离群因子的离群点检测方法 被引量:3
1
作者 凌莉 程张玉 邹承明 《计算机应用与软件》 北大核心 2022年第12期278-283,共6页
单一的离群点检测方法对所有数据采用同一种异常标准,无法综合考虑全局和局部信息,存在精度不足和效率低下等问题。为解决上述问题,提出一种融合孤立森林(iForest)和局部离群因子(LOF)的离群点检测方法(FSIF-HDLOF),即利用高效的iFores... 单一的离群点检测方法对所有数据采用同一种异常标准,无法综合考虑全局和局部信息,存在精度不足和效率低下等问题。为解决上述问题,提出一种融合孤立森林(iForest)和局部离群因子(LOF)的离群点检测方法(FSIF-HDLOF),即利用高效的iForest对原始数据集进行剪枝,再采用LOF对剪枝后的数据集进行更精确的检测。在剪枝及检测阶段,算法针对iForest和LOF的不足进行相应改进。结合数据点在剪枝及检测阶段的异常信息,定义加权融合公式来确定离群点。实验结果表明,FSIF-HDLOF实现了检测精度与效率的良好平衡,尤其在大数据量且低离群点比例的数据集上的检测精度优势较大。 展开更多
关键词 离群点检测 大规模多维数据 孤立森林 数据 局部离群因子
下载PDF
基于iForest和LOF的流量异常检测 被引量:7
2
作者 杭菲璐 郭威 +2 位作者 陈何雄 张振红 易东阳 《计算机应用研究》 CSCD 北大核心 2022年第10期3119-3123,共5页
异常检测在现代大规模分布式系统的安全管理中起着重要作用,而网络流量异常检测则是组成异常检测系统的重要工具。网络流量异常检测的目的是找到和大多数流量数据不同的流量,并将这些离群点视为异常。由于现有的基于树分离的孤立森林(iF... 异常检测在现代大规模分布式系统的安全管理中起着重要作用,而网络流量异常检测则是组成异常检测系统的重要工具。网络流量异常检测的目的是找到和大多数流量数据不同的流量,并将这些离群点视为异常。由于现有的基于树分离的孤立森林(iForest)检测方法存在不能检测出局部异常的缺陷,为了克服这个缺陷,提出一种基于iForest和局部离群因子(LOF)近邻集成的无监督的流量异常检测方法。首先,改进原始的iForest与LOF算法,在提升检测精度的同时控制算法时间;然后分别使用两种改进算法进行检测,并将结果进行融合以得到最终的检测结果;最后在自制数据集上对所提方法进行有效性验证。实验结果表明,所提方法能够有效地隔离出异常,获得良好的流量异常检测效果。 展开更多
关键词 流量异常检测 大规模多维数据 孤立森林 特征离群系数 局部离群因子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部