期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于关键证据与E^2LSH的增量式人名聚类消歧方法 被引量:6
1
作者 周杰 李弼程 唐永旺 《情报学报》 CSSCI 北大核心 2016年第7期714-722,共9页
搜索引擎中关于人名的相关文档往往数据量庞大,且数据为增量式更新过程,新文档出现的时间与规模都存在不确定性。现有的方法多为全局的人名聚类方法,在处理大规模数据时往往效率较低,且无法实现增量聚类。本文提出了一种基于关键证据与E... 搜索引擎中关于人名的相关文档往往数据量庞大,且数据为增量式更新过程,新文档出现的时间与规模都存在不确定性。现有的方法多为全局的人名聚类方法,在处理大规模数据时往往效率较低,且无法实现增量聚类。本文提出了一种基于关键证据与E^2LSH的增量式人名聚类消歧方法。对于初始文档集,采用全局的人名聚类方法,保证聚类性能且能有效控制全局聚类的文档规模,提高聚类效率。对于增量文档集,利用提出的关键证据与E2LSH方法生成候选文档集,极大降低了需要计算相似度的文档规模,提高方法效率。实验结果表明,本文提出的增量式人名聚类消歧方法能有效改善人名聚类的效率,且具有良好的性能。 展开更多
关键词 人名消歧 增量聚类 关键证据 E2LSH 大规模文档
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部