期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Mapreduce的权重集成算法在煤炭行业数据处理中的应用
被引量:
1
1
作者
张文静
《煤炭技术》
CAS
北大核心
2013年第9期198-199,共2页
集成算法通过将多个分类器集成起来,能够有效地提高分类算法的预测精度。集成算法在煤炭开采、预测中也得到了广泛地应用。基于权重的集成算法是通过赋予不同分类器权重,进一步改进了集成算法的性能。但是,由于集成算法需要对多个分类...
集成算法通过将多个分类器集成起来,能够有效地提高分类算法的预测精度。集成算法在煤炭开采、预测中也得到了广泛地应用。基于权重的集成算法是通过赋予不同分类器权重,进一步改进了集成算法的性能。但是,由于集成算法需要对多个分类器构建模型,随着数据规模的增大,传统的集成算法不能快速、有效地完成集成学习工作。本文针对煤炭领域中的大规模数据,提出了基于MapReduce分布式框架的分布式权重集成算法,该算法分布式完成集成的及预测工作。通过大量的实验结果进一步证明了本文提出的算法具有很高的效率以及很好的可扩展性。
展开更多
关键词
权重集成算法
MAPREDUCE
分布式
大规模煤炭数据
下载PDF
职称材料
题名
基于Mapreduce的权重集成算法在煤炭行业数据处理中的应用
被引量:
1
1
作者
张文静
机构
北京农业职业学院计算机系
出处
《煤炭技术》
CAS
北大核心
2013年第9期198-199,共2页
文摘
集成算法通过将多个分类器集成起来,能够有效地提高分类算法的预测精度。集成算法在煤炭开采、预测中也得到了广泛地应用。基于权重的集成算法是通过赋予不同分类器权重,进一步改进了集成算法的性能。但是,由于集成算法需要对多个分类器构建模型,随着数据规模的增大,传统的集成算法不能快速、有效地完成集成学习工作。本文针对煤炭领域中的大规模数据,提出了基于MapReduce分布式框架的分布式权重集成算法,该算法分布式完成集成的及预测工作。通过大量的实验结果进一步证明了本文提出的算法具有很高的效率以及很好的可扩展性。
关键词
权重集成算法
MAPREDUCE
分布式
大规模煤炭数据
Keywords
Weight based ensemble learning
MapReduce
distributed
huge scale coal data
分类号
F407.7 [经济管理—产业经济]
TQ02 [化学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Mapreduce的权重集成算法在煤炭行业数据处理中的应用
张文静
《煤炭技术》
CAS
北大核心
2013
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部