Aims to provide the block architecture of CoStar3400 DSP that is a high performance, low power and scalable VLIW DSP core, it efficiently deployed a variable-length execution set (VLES) execution model which utilizes ...Aims to provide the block architecture of CoStar3400 DSP that is a high performance, low power and scalable VLIW DSP core, it efficiently deployed a variable-length execution set (VLES) execution model which utilizes the maximum parallelism by allowing multiple address generations and data arithmetic logic units to execute multiple instructions in a single clock cycle. The scalability was provided mainly in using more or less number of functional units according to the intended application. Low power support was added by careful architectural design techniques such as fine-grain clock gating and activation of only the required number of control signals at each stage of the pipeline. The said features of the core make it a suitable candidate for many SoC configurations, especially for compute intensive applications such as wire-line and wireless communications, including infrastructure and subscriber communications. The embedded system designers can efficiently use the scalability and VLIW features of the core by scaling the number of execution units according to specific needs of the application to effectively reduce the power consumption, chip area and time to market the intended final product.展开更多
Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for ...Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for its topology. In this paper, the energy consumption issue under the different topology is studied. We derive the exact mathematical expression of energy consumption for the fiat and clustering scheme, respectively. Then the energy consumptions of different schemes are compared. By the comparison, multi-level clustering scheme is more energy efficient in large scale networks. Simulation results demonstrate that our analysis is correct from the view of prolonging the large-scale network lifetime and achieving more power reductions.展开更多
基金the National Natural Science Foundation of China(Grant No.60425413)COMSATS Institute of Information Technology, Pakistan
文摘Aims to provide the block architecture of CoStar3400 DSP that is a high performance, low power and scalable VLIW DSP core, it efficiently deployed a variable-length execution set (VLES) execution model which utilizes the maximum parallelism by allowing multiple address generations and data arithmetic logic units to execute multiple instructions in a single clock cycle. The scalability was provided mainly in using more or less number of functional units according to the intended application. Low power support was added by careful architectural design techniques such as fine-grain clock gating and activation of only the required number of control signals at each stage of the pipeline. The said features of the core make it a suitable candidate for many SoC configurations, especially for compute intensive applications such as wire-line and wireless communications, including infrastructure and subscriber communications. The embedded system designers can efficiently use the scalability and VLIW features of the core by scaling the number of execution units according to specific needs of the application to effectively reduce the power consumption, chip area and time to market the intended final product.
文摘Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for its topology. In this paper, the energy consumption issue under the different topology is studied. We derive the exact mathematical expression of energy consumption for the fiat and clustering scheme, respectively. Then the energy consumptions of different schemes are compared. By the comparison, multi-level clustering scheme is more energy efficient in large scale networks. Simulation results demonstrate that our analysis is correct from the view of prolonging the large-scale network lifetime and achieving more power reductions.