现实世界中存在大量多目标优化问题,其中大规模多目标优化问题是目前研究的热点,然而现有多目标进化算法缺少有效进化算子来处理大规模优化问题。因此,本文提出了一种基于社会学习粒子群的大规模多目标优化算法(A largescale multi-obje...现实世界中存在大量多目标优化问题,其中大规模多目标优化问题是目前研究的热点,然而现有多目标进化算法缺少有效进化算子来处理大规模优化问题。因此,本文提出了一种基于社会学习粒子群的大规模多目标优化算法(A largescale multi-objective algorithm based on a social learning particle swarm optimization algorithm,LMOSLPSO)。LMOSLPSO首先采用转换的密度估计策略求解每个粒子的适应值;然后基于社会学习粒子群思想,设计了一种有效的粒子进化的方法;最后执行多目标优化算法RVEA(a reference vector guided evolutionary algorithm)的环境选择操作来选择下一代个体。其中,转换的密度估计策略有利于平衡算法种群收敛性和多样性,新设计的粒子进化的方法有利于提高算法的搜索能力。在9个标准的大规模优化测试问题上,与多个近期提出的多目标优化算法进行对比。实验结果表明,该文所提出的LMOSLPSO算法具有较好的收敛性及分布多样性。展开更多
文摘大规模稀疏多目标优化问题(Sparse Multiobjective Optimization Problems,SMOPs)广泛存在于现实世界。为大规模SMOPs提出通用的解决方法,对于进化计算、控制论和机器学习等领域中的问题解决都具有推动作用。由于SMOPs具有高维决策空间和Pareto最优解稀疏的特性,现有的进化算法在解决SMOPs时,很容易陷入维数灾难的困境。针对这个问题,以稀疏分布的学习为切入点,提出了一种基于在线学习稀疏特征的大规模多目标进化算法(Large-scale Multiobjective Evolutio-nary Algorithm Based on Online Learning of Sparse Features,MOEA/OLSF)。具体地,首先设计了一种在线学习稀疏特征的方法来挖掘非零变量;然后提出了一种稀疏遗传算子,用于非零变量的进一步搜索和子代解的生成,在非零变量搜索过程中,其二进制交叉和变异算子也用于控制解的稀疏性和多样性。与最新的优秀算法在不同规模的测试问题上的对比结果表明,所提算法在收敛速度和性能方面均更优。
文摘现实世界中存在大量多目标优化问题,其中大规模多目标优化问题是目前研究的热点,然而现有多目标进化算法缺少有效进化算子来处理大规模优化问题。因此,本文提出了一种基于社会学习粒子群的大规模多目标优化算法(A largescale multi-objective algorithm based on a social learning particle swarm optimization algorithm,LMOSLPSO)。LMOSLPSO首先采用转换的密度估计策略求解每个粒子的适应值;然后基于社会学习粒子群思想,设计了一种有效的粒子进化的方法;最后执行多目标优化算法RVEA(a reference vector guided evolutionary algorithm)的环境选择操作来选择下一代个体。其中,转换的密度估计策略有利于平衡算法种群收敛性和多样性,新设计的粒子进化的方法有利于提高算法的搜索能力。在9个标准的大规模优化测试问题上,与多个近期提出的多目标优化算法进行对比。实验结果表明,该文所提出的LMOSLPSO算法具有较好的收敛性及分布多样性。