针对目前旅行商问题的求解精度较差、容易陷入局部最优和收敛效果慢等缺点,根据模拟退火算法和大邻域搜索算法的特点,提出了一种基于大规模邻域搜索的模拟退火算法解决旅行商问题(simulated annealing algorithm with large neighborhoo...针对目前旅行商问题的求解精度较差、容易陷入局部最优和收敛效果慢等缺点,根据模拟退火算法和大邻域搜索算法的特点,提出了一种基于大规模邻域搜索的模拟退火算法解决旅行商问题(simulated annealing algorithm with large neighborhood search, SALNS)。上述算法在模拟退火的基础上修改算法的温度变化函数,构造旅行商问题的解空间,采用大邻域搜索技术和2-OPT算子增强局部搜索能力可以很好的解决旅行商问题。选取若干TSPLIB数据集进行实验,对降温函数和运行时间进行试验,并与一些新型智能算法对比。仿真结果表明,所提方法收敛效果好和鲁棒性强能够有效求解旅行商问题。展开更多
为了给物流企业在车辆配送方案制定上提供决策支持,针对电动物流车与燃油物流车混合配送的模式,研究了带时间窗的动态需求车辆路径问题,建立了以配送总成本最小化为目标的两阶段整数规划模型。针对模型特点,设计了改进的自适应大规模邻...为了给物流企业在车辆配送方案制定上提供决策支持,针对电动物流车与燃油物流车混合配送的模式,研究了带时间窗的动态需求车辆路径问题,建立了以配送总成本最小化为目标的两阶段整数规划模型。针对模型特点,设计了改进的自适应大规模邻域搜索(improved adaptive large neighborhood search,IALNS)算法,提出新的删除、修复算子及动态阶段加速策略,分别针对大规模的静态算例与动态算例进行算法性能测试。结果表明,与无改进策略的IALNS(IALNS-ND)相比,静态问题中在相同的求解时间内75%的算例(12个算例中9个)IALNS得到的最小值和平均值优于IALNS-ND,动态问题中95%(60个算例中57个算例)的算例可以得到成本和时间均优于IALNS-ND的解;与三种算法——自适应大规模邻域搜索算法(ALNS)、大规模邻域搜索算法(LNS)以及变邻域搜索算法(VNS)相比,静态问题中所有算例IALNS获得的总成本的最小值和平均值均优于三个对比算法,动态问题中58%(60个算例中35个算例)的算例IALNS能够以少于三个对比算法1.5倍甚至10倍的时间获得更优的解。同时随着问题动态度的提高,IALNS的速度更快,质量更好,证明了该算法在求解时效性要求高的动态需求车辆路径问题的优越性。展开更多
To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
文摘针对目前旅行商问题的求解精度较差、容易陷入局部最优和收敛效果慢等缺点,根据模拟退火算法和大邻域搜索算法的特点,提出了一种基于大规模邻域搜索的模拟退火算法解决旅行商问题(simulated annealing algorithm with large neighborhood search, SALNS)。上述算法在模拟退火的基础上修改算法的温度变化函数,构造旅行商问题的解空间,采用大邻域搜索技术和2-OPT算子增强局部搜索能力可以很好的解决旅行商问题。选取若干TSPLIB数据集进行实验,对降温函数和运行时间进行试验,并与一些新型智能算法对比。仿真结果表明,所提方法收敛效果好和鲁棒性强能够有效求解旅行商问题。
文摘为了给物流企业在车辆配送方案制定上提供决策支持,针对电动物流车与燃油物流车混合配送的模式,研究了带时间窗的动态需求车辆路径问题,建立了以配送总成本最小化为目标的两阶段整数规划模型。针对模型特点,设计了改进的自适应大规模邻域搜索(improved adaptive large neighborhood search,IALNS)算法,提出新的删除、修复算子及动态阶段加速策略,分别针对大规模的静态算例与动态算例进行算法性能测试。结果表明,与无改进策略的IALNS(IALNS-ND)相比,静态问题中在相同的求解时间内75%的算例(12个算例中9个)IALNS得到的最小值和平均值优于IALNS-ND,动态问题中95%(60个算例中57个算例)的算例可以得到成本和时间均优于IALNS-ND的解;与三种算法——自适应大规模邻域搜索算法(ALNS)、大规模邻域搜索算法(LNS)以及变邻域搜索算法(VNS)相比,静态问题中所有算例IALNS获得的总成本的最小值和平均值均优于三个对比算法,动态问题中58%(60个算例中35个算例)的算例IALNS能够以少于三个对比算法1.5倍甚至10倍的时间获得更优的解。同时随着问题动态度的提高,IALNS的速度更快,质量更好,证明了该算法在求解时效性要求高的动态需求车辆路径问题的优越性。
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.