为了解四川地区结瘤大豆根际土壤是否存在与紫云英、苜蓿和三叶草共生结瘤的根瘤菌及其多样性,从四川盆地采集不同种植模式下结瘤大豆根际土壤样品31份,利用紫云英、苜蓿和三叶草进行盆栽捕获试验以获得共生根瘤,从根瘤中分离纯化出根瘤...为了解四川地区结瘤大豆根际土壤是否存在与紫云英、苜蓿和三叶草共生结瘤的根瘤菌及其多样性,从四川盆地采集不同种植模式下结瘤大豆根际土壤样品31份,利用紫云英、苜蓿和三叶草进行盆栽捕获试验以获得共生根瘤,从根瘤中分离纯化出根瘤菌,对其进行表型和分子鉴定;并将根瘤菌回接到紫云英、苜蓿、三叶草和大豆根际以检测根瘤菌的寄主范围.在捕获实验中,苜蓿和三叶草分别在6个土壤样品中共生结瘤,而紫云英只在2个土样中共生结瘤,并从共生根瘤中分离出14株根瘤菌;16S r DNA基因序列的相似性分析表明这14株根瘤菌均属于根瘤菌属(Rhizobium),且16S r DNA基因的系统发育树揭示它们分属于根瘤菌属的不同种;这14株根瘤菌在回接实验中都只能让捕获豆科植物结瘤,而不能让其他3种豆科植物结瘤.本研究结果表明,四川地区结瘤大豆根际土壤中的紫云英根瘤菌(Rhizobium astragali)、苜蓿根瘤菌(R.meliloti)和三叶草根瘤菌(R.leguminosarum var.trifolii)资源较少,其与大豆根瘤菌(Bradyrhizobium japonicum)分属于不同的属,且根瘤菌的回接实验进一步证明了根瘤菌的寄主专一性.展开更多
Soil respiration induced by soybean cultivation over its entire growing season and the factors influencing soil respiration were investigated to examine the seasonal pattern of soil respiration induced by soybean cult...Soil respiration induced by soybean cultivation over its entire growing season and the factors influencing soil respiration were investigated to examine the seasonal pattern of soil respiration induced by soybean cultivation, explore soybean growth and photosynthesis on soil respiration, and determine the temperature dependence on soil respiration. Soil respiration in a pot experiment with and without soybean plants was sampled using the static chamber method and measured using gas chromatograph. Air temperature was a dominant factor controlling soil respiration rate in unplanted soil. Additionally, rhizosphere respiration comprised 62% to 98% of the soil respiration rate in the soybean-planted soil varying with the soybean growth stages. Harvesting aerial parts of soybean plant caused an immediate drop in the soil respiration rate at that stage. After harvesting the aerial parts of the soybean plant, a highly significant correlation between soil respiration rate and air temperature was found at the flowering stage (P 〈 0.01), the pod stage (P 〈 0.01), and the seed-filling stage (P 〈 0.05). Thus, rhizosphere respiration during the soybean-growing period not only made a great contribution to soil respiration, but also determined the seasonal variation pattern of the soll respiration rate.展开更多
A pot experiment was conducted to study the effect of an anionic surfactant linear alkylbenzene sulfonate(LAS) application on cadmium(Cd)fractions in soils and Cd distribution in different tissues of soybean(Glycine m...A pot experiment was conducted to study the effect of an anionic surfactant linear alkylbenzene sulfonate(LAS) application on cadmium(Cd)fractions in soils and Cd distribution in different tissues of soybean(Glycine max)plants as well as soil pH.Soil samples were treated with three levels of Cd(0,5,and 10 mg kg^(-1))and five levels of LAS(0,5, 15,50,and 100 mg L^(-1)).Results indicated that compared to the control soils(no Cd and no LAS treatment),soil pH increased and available Cd decreased in the soil treated with external Cd and watered with LAS solutions.Meanwhile, soil exchangeable Cd and Cd bound to carbonates decreased;Cd bound to amorphous iron and manganese oxides and Cd bound to organic matter increased.In addition,LAS application could reduce enrichment of Cd in soybean plants, resulting in decreased Cd in the soybean plants.Thus,suitable LAS application could decrease bioavailability and mobility of soil Cd.展开更多
The soybean is a crop which easily accumulates cadmium(Cd),which threatens human health.To assess the impact of the application of classic soil amendments on the Cd concentration in the soybean and the Cd bioavailabil...The soybean is a crop which easily accumulates cadmium(Cd),which threatens human health.To assess the impact of the application of classic soil amendments on the Cd concentration in the soybean and the Cd bioavailability in the soil,a field study was conducted in Xiangtan Country(XT)and Liling City(LL),with inorganic-organic-microbial matter(T1)and silicon-calcium-magnesium oxide from natural minerals(T2)as two soil amendments in this study.The results indicated that the soil pH in the two sites increased significantly,up to 0.7~1.1 units and the Cd concentration in the stem,leaf,husk and seed in the two sites decreased differently.Of which,the soil available Cd in Xiangtan County(XT)decreased by 11.9%~16.0%,the enrichment factor(EF)and translocation factor(TF)reduced by 37.9%and 23.5%,respectively.Both soil amendments were effective in increasing the soil pH,reducing the seed and soil available Cd,but the soil organic matter,total N,stem length and grain yields decreased slightly.In conclusion,the Cd bioavailability was reduced but the soybean growth was restrained with the application of the soil amendments.展开更多
Soybean is one of the crops most difficult to be manipulated in vitro. Although several soybean marker genes, all the selectable markers used were from bacteria origin. To find suitable selectable marker gene from pla...Soybean is one of the crops most difficult to be manipulated in vitro. Although several soybean marker genes, all the selectable markers used were from bacteria origin. To find suitable selectable marker gene from plant origin for soybean transformation, a mutant acetolactate synthase (ALS) gene from Arabidopsis thaliana was tested for Agrobacterium-mediated soybean embryo axis transformation with the herbicide Arsenal as the selective agent. Transgenic soybean plants were obtained after the herbicide se- lection and the To transgenic lines showed resistance to the herbicide at a concentration of 100 g/ha. ALS enzyme assay of To transgenic line also showed higher activity compared to the wild type control plant. PCR analysis of the T1 transgenic lines confirmed the integration and segregation of the transgene. Taken together, our results showed that the mutant ALS gene is a suitable selectable marker for soybean transformation.展开更多
Mixed contaminated brownfield sites have brought serious risks to human health and environmental safety. With the purpose of removing polycyclic aromatic hydrocarbons (PAHs) and heavy metals from a coking plant site...Mixed contaminated brownfield sites have brought serious risks to human health and environmental safety. With the purpose of removing polycyclic aromatic hydrocarbons (PAHs) and heavy metals from a coking plant site, an innovative technology for ex-situ washing was developed in the present work. The combination of 15.0 mLL-1 soybean oil and 7.5 g L-1 tea saponin proved an effective method to extract co-pollutants from soil. After two consecutive washing cycles, the efficiency rates of removal for 3-, 4-, 5(+6)-ring, and total PAHs, Cd, and Ni were approximately 98.2%, 96.4%, 92.3%, 96.3%, 94.1%, and 89.4%, respectively. Meanwhile, as evaluated by Tenax extraction method and metal stability indices, the residual PAHs and heavy metals after consecutive washing mainly existed in the form with extremely low bioaccessibility in the soil. Thus, in the soil after two washing cycles, there appeared limited environmental transfer risk of co-pollutants. Moreover, a subsequent precipitation method with alkaline solution and PAH- degrading strain Sphingobium sp. PHE9 inoculation effectively removed 84.6%-100% of Cd, 82.5%-91.7% of Ni, and 92.6%-98.4% of PAHs from the first and second washing solvents. The recovered solvents also exhibited a high recycling effectiveness. Therefore, the combined cleanup strategy proposed in this study proved environmentally friendly, which also played a major role in risk assessment and marlagement in mixed polluted sites.展开更多
Concentrations of Pb, Cd, Cu, Zn, Cr and Ni in soybean (Glycine max L.) grown near the Dabaoshan Mine were investigated, and their potential risk to the health of inhabitants was estimated. In the Fandong (FD) and Zho...Concentrations of Pb, Cd, Cu, Zn, Cr and Ni in soybean (Glycine max L.) grown near the Dabaoshan Mine were investigated, and their potential risk to the health of inhabitants was estimated. In the Fandong (FD) and Zhongxin (ZX) villages, which are near the Dabaoshan mineral deposit, concentrations of Pb (0.34 mg kg^(-1) for FD), Cd (0.23 mg kg^(-1) for ZX) and Cr (1.14 and 1.75 mg kg^(-1) for FD and ZX, respectively) in the seeds of soybean exceeded the tolerance limit set by Chinese standards. The estimated daily intakes (EDIs) from consumption of soybean seeds for FD inhabitants were 0.570, 0.170, 38.550, 142.400, 1.910 and 14.530 μg d^(-1) kg^(-1) boby weight for Pb, Cd, Cu, Zn, Cr and Ni, respectively. Our results indicate that soybeans grown in the vicinity of the Dabaoshan Mine accumulate some metals, and the seeds pose a potential health risk to the local inhabitants.展开更多
Biochar effects on legume growth and biological nitrogen fixation have been studied extensively, mostly in acidic soils with laboratory produced biochar. In the present study, a pot experiment in a full factorial expe...Biochar effects on legume growth and biological nitrogen fixation have been studied extensively, mostly in acidic soils with laboratory produced biochar. In the present study, a pot experiment in a full factorial experimental design was performed to examine soybean yield and nodulation of three genotypes grown with or without biochar and NPK fertilizers in an alkaline soil. We observed synergistic effects of biochar and NPK fertilizer applications on biomass and seed yields for all three soybean genotypes. Total biomass production and seed yield increased on average by 67% and 54%, respectively, with biochar and by 201% and 182% with NPK fertilizer application compared to the control. When applications of biochar and NPK fertilizer were combined, the increases were 391% and367%, respectively. However, the biomass production in the control was very low(692 kg ha-1) due to a high soil p H(8.80). The nodulation increased with biochar and NPK fertilizer applications, and was largest with the combined application. A correlation was found between leaf chlorophyll content(single photon avalanche diode value) and nodule number. We suggested that the synergistic increase in yield was due to a decrease in soil p H caused by biochar and NPK fertilizer applications thereby increasing P availability in this alkaline soil.展开更多
Determining how agricultural management practices affect soil phosphorus(P) over the winter may further our understanding of the soil P cycle under specific environmental conditions in eastern Canada. This study asses...Determining how agricultural management practices affect soil phosphorus(P) over the winter may further our understanding of the soil P cycle under specific environmental conditions in eastern Canada. This study assessed changes over winter for soil P fractions and other selected chemical properties as affected by tillage and P fertilization. In 1992, a long-term corn(Zea mays L.) and soybean(Glycine max L.) rotational experiment was established in the province of Quebec, Canada. Soil samples(0–15 cm) were collected in fall 2001 and 2007 after a soybean harvest, and in the following spring 2002 and 2008 before corn seeding, in main plots under moldboard plow and no-till managements and selected subplots fertilized with 0, 17.5, or 35 kg P ha-1and 160 kg N ha-1. Soil samples were analyzed for P fractions and other chemical properties to assess changes over winter for 2001–2002 and 2007–2008. Changes over winter of all soil P fractions were significant for the two periods, indicating the occurrence of soil P transformation and movement over winter. The Mehlich-3-extractable Fe, Al, Ca, and Mg decreased during the two studied periods. Tillage had no significant effect on all soil P fractions. The resin-extractable P in 2001–2002 and Na HCO3-extractable inorganic P and Na OH-extractable organic P during the two winters were significantly increased under P fertilization. This study demonstrated that P in cultivated soils changed during winter as a result of changes in labile P fractions possibly due to the solubilization of residual fertilizer P combined with environmental factors.展开更多
Soil quality assessment provides a tool for agriculture managers and policy makers to gain a better understanding of how various agricultural systems affect soil resources. Soil quality of Hailun County, a typical soy...Soil quality assessment provides a tool for agriculture managers and policy makers to gain a better understanding of how various agricultural systems affect soil resources. Soil quality of Hailun County, a typical soybean (Glycine max L. Merill) growing area located in Northeast China, was evaluated using soil quality index (SQI) methods. Each SQI was computed using a minimum data set (MDS) selected using principal components analysis (PCA) as a data reduction technique. Eight MDS indicators were selected from 20 physical and chemical soil measurements. The MDS accounted for 74.9% of the total variance in the total data set (TDS). The SQI values for 88 soil samples were evaluated with linear scoring techniques and various weight methods. The results showed that SQI values correlated well with soybean yield (r = 0.658**) when indicators in MDS were weighted by the regression coefficient computed for each yield and index. Stepwise regression between yield and principal components (PCs) indicated that available boron (AvB), available phosphorus (AvP), available potassium (AvK), available iron (AvFe) and texture were the main factors limiting soybean yield. The method used to select an MDS could not only appropriately assess soil quality but also be used as a powerful tool for soil nutrient diagnosis at the regional level.展开更多
文摘为了解四川地区结瘤大豆根际土壤是否存在与紫云英、苜蓿和三叶草共生结瘤的根瘤菌及其多样性,从四川盆地采集不同种植模式下结瘤大豆根际土壤样品31份,利用紫云英、苜蓿和三叶草进行盆栽捕获试验以获得共生根瘤,从根瘤中分离纯化出根瘤菌,对其进行表型和分子鉴定;并将根瘤菌回接到紫云英、苜蓿、三叶草和大豆根际以检测根瘤菌的寄主范围.在捕获实验中,苜蓿和三叶草分别在6个土壤样品中共生结瘤,而紫云英只在2个土样中共生结瘤,并从共生根瘤中分离出14株根瘤菌;16S r DNA基因序列的相似性分析表明这14株根瘤菌均属于根瘤菌属(Rhizobium),且16S r DNA基因的系统发育树揭示它们分属于根瘤菌属的不同种;这14株根瘤菌在回接实验中都只能让捕获豆科植物结瘤,而不能让其他3种豆科植物结瘤.本研究结果表明,四川地区结瘤大豆根际土壤中的紫云英根瘤菌(Rhizobium astragali)、苜蓿根瘤菌(R.meliloti)和三叶草根瘤菌(R.leguminosarum var.trifolii)资源较少,其与大豆根瘤菌(Bradyrhizobium japonicum)分属于不同的属,且根瘤菌的回接实验进一步证明了根瘤菌的寄主专一性.
基金Project supported by the National Science Fund for Distinguished Young Scholars (No. 40125004)the KnowledgeInnovation Project of Chinese Academy of Sciences (No. KZCX1-SW-01-05).
文摘Soil respiration induced by soybean cultivation over its entire growing season and the factors influencing soil respiration were investigated to examine the seasonal pattern of soil respiration induced by soybean cultivation, explore soybean growth and photosynthesis on soil respiration, and determine the temperature dependence on soil respiration. Soil respiration in a pot experiment with and without soybean plants was sampled using the static chamber method and measured using gas chromatograph. Air temperature was a dominant factor controlling soil respiration rate in unplanted soil. Additionally, rhizosphere respiration comprised 62% to 98% of the soil respiration rate in the soybean-planted soil varying with the soybean growth stages. Harvesting aerial parts of soybean plant caused an immediate drop in the soil respiration rate at that stage. After harvesting the aerial parts of the soybean plant, a highly significant correlation between soil respiration rate and air temperature was found at the flowering stage (P 〈 0.01), the pod stage (P 〈 0.01), and the seed-filling stage (P 〈 0.05). Thus, rhizosphere respiration during the soybean-growing period not only made a great contribution to soil respiration, but also determined the seasonal variation pattern of the soll respiration rate.
基金the National Natural Science Foundation of China(No.20677080)the Innovation Foundation of Hunan Agricultural University(No.04PT02)
文摘A pot experiment was conducted to study the effect of an anionic surfactant linear alkylbenzene sulfonate(LAS) application on cadmium(Cd)fractions in soils and Cd distribution in different tissues of soybean(Glycine max)plants as well as soil pH.Soil samples were treated with three levels of Cd(0,5,and 10 mg kg^(-1))and five levels of LAS(0,5, 15,50,and 100 mg L^(-1)).Results indicated that compared to the control soils(no Cd and no LAS treatment),soil pH increased and available Cd decreased in the soil treated with external Cd and watered with LAS solutions.Meanwhile, soil exchangeable Cd and Cd bound to carbonates decreased;Cd bound to amorphous iron and manganese oxides and Cd bound to organic matter increased.In addition,LAS application could reduce enrichment of Cd in soybean plants, resulting in decreased Cd in the soybean plants.Thus,suitable LAS application could decrease bioavailability and mobility of soil Cd.
基金Supported by National Key Research and Development Program of China(2016YFD0300909-1,2017YFD0801005)~~
文摘The soybean is a crop which easily accumulates cadmium(Cd),which threatens human health.To assess the impact of the application of classic soil amendments on the Cd concentration in the soybean and the Cd bioavailability in the soil,a field study was conducted in Xiangtan Country(XT)and Liling City(LL),with inorganic-organic-microbial matter(T1)and silicon-calcium-magnesium oxide from natural minerals(T2)as two soil amendments in this study.The results indicated that the soil pH in the two sites increased significantly,up to 0.7~1.1 units and the Cd concentration in the stem,leaf,husk and seed in the two sites decreased differently.Of which,the soil available Cd in Xiangtan County(XT)decreased by 11.9%~16.0%,the enrichment factor(EF)and translocation factor(TF)reduced by 37.9%and 23.5%,respectively.Both soil amendments were effective in increasing the soil pH,reducing the seed and soil available Cd,but the soil organic matter,total N,stem length and grain yields decreased slightly.In conclusion,the Cd bioavailability was reduced but the soybean growth was restrained with the application of the soil amendments.
基金Supported by the National Natural Science Foundation of China (No. 30370133).
文摘Soybean is one of the crops most difficult to be manipulated in vitro. Although several soybean marker genes, all the selectable markers used were from bacteria origin. To find suitable selectable marker gene from plant origin for soybean transformation, a mutant acetolactate synthase (ALS) gene from Arabidopsis thaliana was tested for Agrobacterium-mediated soybean embryo axis transformation with the herbicide Arsenal as the selective agent. Transgenic soybean plants were obtained after the herbicide se- lection and the To transgenic lines showed resistance to the herbicide at a concentration of 100 g/ha. ALS enzyme assay of To transgenic line also showed higher activity compared to the wild type control plant. PCR analysis of the T1 transgenic lines confirmed the integration and segregation of the transgene. Taken together, our results showed that the mutant ALS gene is a suitable selectable marker for soybean transformation.
基金financially supported by the Leading Project of the Institute of Soil Science, Chinese Academy of Sciences (ISSASIP1655)Jiangsu Municipal Natural Science Foundation, China (Nos. BK20141050 and BK20140723)the National Natural Science Foundation of China (Nos. 2014CB441105, 41401254, 41401347, and 41401345)
文摘Mixed contaminated brownfield sites have brought serious risks to human health and environmental safety. With the purpose of removing polycyclic aromatic hydrocarbons (PAHs) and heavy metals from a coking plant site, an innovative technology for ex-situ washing was developed in the present work. The combination of 15.0 mLL-1 soybean oil and 7.5 g L-1 tea saponin proved an effective method to extract co-pollutants from soil. After two consecutive washing cycles, the efficiency rates of removal for 3-, 4-, 5(+6)-ring, and total PAHs, Cd, and Ni were approximately 98.2%, 96.4%, 92.3%, 96.3%, 94.1%, and 89.4%, respectively. Meanwhile, as evaluated by Tenax extraction method and metal stability indices, the residual PAHs and heavy metals after consecutive washing mainly existed in the form with extremely low bioaccessibility in the soil. Thus, in the soil after two washing cycles, there appeared limited environmental transfer risk of co-pollutants. Moreover, a subsequent precipitation method with alkaline solution and PAH- degrading strain Sphingobium sp. PHE9 inoculation effectively removed 84.6%-100% of Cd, 82.5%-91.7% of Ni, and 92.6%-98.4% of PAHs from the first and second washing solvents. The recovered solvents also exhibited a high recycling effectiveness. Therefore, the combined cleanup strategy proposed in this study proved environmentally friendly, which also played a major role in risk assessment and marlagement in mixed polluted sites.
基金Supported by the National Natural Science Foundation of China (No. 40871221)
文摘Concentrations of Pb, Cd, Cu, Zn, Cr and Ni in soybean (Glycine max L.) grown near the Dabaoshan Mine were investigated, and their potential risk to the health of inhabitants was estimated. In the Fandong (FD) and Zhongxin (ZX) villages, which are near the Dabaoshan mineral deposit, concentrations of Pb (0.34 mg kg^(-1) for FD), Cd (0.23 mg kg^(-1) for ZX) and Cr (1.14 and 1.75 mg kg^(-1) for FD and ZX, respectively) in the seeds of soybean exceeded the tolerance limit set by Chinese standards. The estimated daily intakes (EDIs) from consumption of soybean seeds for FD inhabitants were 0.570, 0.170, 38.550, 142.400, 1.910 and 14.530 μg d^(-1) kg^(-1) boby weight for Pb, Cd, Cu, Zn, Cr and Ni, respectively. Our results indicate that soybeans grown in the vicinity of the Dabaoshan Mine accumulate some metals, and the seeds pose a potential health risk to the local inhabitants.
基金Patuakhali Science and Technology University (PSTU),Bangladesh for funding of project
文摘Biochar effects on legume growth and biological nitrogen fixation have been studied extensively, mostly in acidic soils with laboratory produced biochar. In the present study, a pot experiment in a full factorial experimental design was performed to examine soybean yield and nodulation of three genotypes grown with or without biochar and NPK fertilizers in an alkaline soil. We observed synergistic effects of biochar and NPK fertilizer applications on biomass and seed yields for all three soybean genotypes. Total biomass production and seed yield increased on average by 67% and 54%, respectively, with biochar and by 201% and 182% with NPK fertilizer application compared to the control. When applications of biochar and NPK fertilizer were combined, the increases were 391% and367%, respectively. However, the biomass production in the control was very low(692 kg ha-1) due to a high soil p H(8.80). The nodulation increased with biochar and NPK fertilizer applications, and was largest with the combined application. A correlation was found between leaf chlorophyll content(single photon avalanche diode value) and nodule number. We suggested that the synergistic increase in yield was due to a decrease in soil p H caused by biochar and NPK fertilizer applications thereby increasing P availability in this alkaline soil.
基金supported by Agriculture and Agri-Food Canada(AAFC)the MOE(Ministry of Education of China)-AAFC Ph.D.Research Program
文摘Determining how agricultural management practices affect soil phosphorus(P) over the winter may further our understanding of the soil P cycle under specific environmental conditions in eastern Canada. This study assessed changes over winter for soil P fractions and other selected chemical properties as affected by tillage and P fertilization. In 1992, a long-term corn(Zea mays L.) and soybean(Glycine max L.) rotational experiment was established in the province of Quebec, Canada. Soil samples(0–15 cm) were collected in fall 2001 and 2007 after a soybean harvest, and in the following spring 2002 and 2008 before corn seeding, in main plots under moldboard plow and no-till managements and selected subplots fertilized with 0, 17.5, or 35 kg P ha-1and 160 kg N ha-1. Soil samples were analyzed for P fractions and other chemical properties to assess changes over winter for 2001–2002 and 2007–2008. Changes over winter of all soil P fractions were significant for the two periods, indicating the occurrence of soil P transformation and movement over winter. The Mehlich-3-extractable Fe, Al, Ca, and Mg decreased during the two studied periods. Tillage had no significant effect on all soil P fractions. The resin-extractable P in 2001–2002 and Na HCO3-extractable inorganic P and Na OH-extractable organic P during the two winters were significantly increased under P fertilization. This study demonstrated that P in cultivated soils changed during winter as a result of changes in labile P fractions possibly due to the solubilization of residual fertilizer P combined with environmental factors.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No.KSCX1-YW-09-02)the National Basic Research Program of China(No.2013CB127401)+1 种基金the National Natural Science Foundation of China(No.41271309)the International Plant Nutrition Institute (IPNI) China Program
文摘Soil quality assessment provides a tool for agriculture managers and policy makers to gain a better understanding of how various agricultural systems affect soil resources. Soil quality of Hailun County, a typical soybean (Glycine max L. Merill) growing area located in Northeast China, was evaluated using soil quality index (SQI) methods. Each SQI was computed using a minimum data set (MDS) selected using principal components analysis (PCA) as a data reduction technique. Eight MDS indicators were selected from 20 physical and chemical soil measurements. The MDS accounted for 74.9% of the total variance in the total data set (TDS). The SQI values for 88 soil samples were evaluated with linear scoring techniques and various weight methods. The results showed that SQI values correlated well with soybean yield (r = 0.658**) when indicators in MDS were weighted by the regression coefficient computed for each yield and index. Stepwise regression between yield and principal components (PCs) indicated that available boron (AvB), available phosphorus (AvP), available potassium (AvK), available iron (AvFe) and texture were the main factors limiting soybean yield. The method used to select an MDS could not only appropriately assess soil quality but also be used as a powerful tool for soil nutrient diagnosis at the regional level.