期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于神经网络的动态逆大迎角机动飞行控制律设计 被引量:1
1
作者 樊战旗 刘林 《计算机测量与控制》 北大核心 2013年第6期1547-1549,共3页
针对飞机大迎角机动特殊的气动特性以及传统非线性动态逆控制器存在的缺陷,提出了一种基于神经网络的非线性动态逆大迎角飞行控制律设计方法,该方法利用非线性动态逆与奇异摄动理论,设计了基本的大迎角飞行控制律;针对动态逆方法对建模... 针对飞机大迎角机动特殊的气动特性以及传统非线性动态逆控制器存在的缺陷,提出了一种基于神经网络的非线性动态逆大迎角飞行控制律设计方法,该方法利用非线性动态逆与奇异摄动理论,设计了基本的大迎角飞行控制律;针对动态逆方法对建模精度的高度依赖问题,将动态逆方法与神经网络相结合,采用神经网络对逆误差进行在线补偿;基于具有大迎角条件下气动特性的六自由度非线性飞机模型进行了仿真验证;仿真结果表明,所设计的控制律具有良好的大迎角飞行控制效果,飞机迎角响应迅速,实现了"眼镜蛇"机动控制,对于模型的不确定性,NN-NDI控制方法依然具有良好的大迎角控制性能。 展开更多
关键词 神经网络 非线性动态逆 推力矢量 大迎角建模
下载PDF
Gated Neural Network-Based Unsteady Aerodynamic Modeling for Large Angles of Attack
2
作者 DENG Yongtao CHENG Shixin MI Baigang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期432-443,共12页
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ... Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling. 展开更多
关键词 large angle of attack unsteady aerodynamic modeling gated neural networks generalization ability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部