期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
飞行器快速俯仰产生大迎角非定常气动力数学模型研究 被引量:8
1
作者 高正红 焦天峰 《西北工业大学学报》 EI CAS CSCD 北大核心 2001年第4期506-510,共5页
在 Goman提出的状态空间模型的基础上 ,开展了有关建立大迎角非定常气动力数学模型问题的研究。针对以往在运用状态空间模型建立大迎角非定常气动力数学模型中存在的问题 ,通过分析状态方程中非定常影响参数与减缩频率 (或无量纲俯仰角... 在 Goman提出的状态空间模型的基础上 ,开展了有关建立大迎角非定常气动力数学模型问题的研究。针对以往在运用状态空间模型建立大迎角非定常气动力数学模型中存在的问题 ,通过分析状态方程中非定常影响参数与减缩频率 (或无量纲俯仰角速率 )的关系 ,建立了改进数学模型的基本思路。同时运用插值方法给出了二者之间的关系 ,并将此结果引入到状态方程中。经过辨识验算后表明 ,改进后的模型不仅改善了该模型对气动力的预测准确度 ,同时也提高了描述大迎角非定常气动力的能力。 展开更多
关键词 大迎角非定常气动力 数学模型 状态空间 飞行器 俯仰运动
下载PDF
Gated Neural Network-Based Unsteady Aerodynamic Modeling for Large Angles of Attack
2
作者 DENG Yongtao CHENG Shixin MI Baigang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期432-443,共12页
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ... Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling. 展开更多
关键词 large angle of attack unsteady aerodynamic modeling gated neural networks generalization ability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部