The relationship between gain and carrier density is analysed. In the quantum well (QW) lasers, initially, the gain increases rapidly with the carrier density and then starts to saturate. It can be seen that QW lasers...The relationship between gain and carrier density is analysed. In the quantum well (QW) lasers, initially, the gain increases rapidly with the carrier density and then starts to saturate. It can be seen that QW lasers have a higher differential gain because of the step-like state density, and that the gain saturates at higher carrier densities because of the constant state density of the lowest subband. It is shown that simple logarithmic gain-carrier density is more accurate than the traditional linearized form for a QW laser.展开更多
The associated production of Z boson and a pair of new quarks at the Large Hadron Collider (LHC) is studied. The cross sections for both sequential fermions and vector-like fermions are presented. It is found that f...The associated production of Z boson and a pair of new quarks at the Large Hadron Collider (LHC) is studied. The cross sections for both sequential fermions and vector-like fermions are presented. It is found that for sequential fermions the cross sections can reach 1 - 10^2 /b for heavy quark mass mQ from 1000 GeV to 200 GeV. For vector-like quarks, the cross sections are suppressed by mixing parameter sin OL. Focusing on process pp → b'b', we investigate the possibility of detecting the 6l 4- 2j signal. For a b' with light mass and a large branching ratio of b' → bZ, it is found that only several signal events ( parton level ) can be produced with 1000 fb^-1 integrated luminosity. Although the signal events are rare, all the final states are produced centrally and multi lepton final states are clear at hadron collider, which could be easily detected.展开更多
We have investigated the general relativistic field equations for neutron stars.We find that there are solutions for the equilibriummass distribution without a maximum mass limit.The solutions correspond to stars with...We have investigated the general relativistic field equations for neutron stars.We find that there are solutions for the equilibriummass distribution without a maximum mass limit.The solutions correspond to stars with a void inside their centers.In thesesolutions,the mass density and pressure increase first from zero at the inner radius to a peak and then decrease to zero at the outerradius.With the change of the void boundary,the mass and particle number of the star can approach infinity.Neutron stars withlarge masses can remain stable and do not collapse into black holes.展开更多
It is known that the inevitable interaction of the entangled qubits with their environments may result in the degradation of quantum correlation.We study the decoherence of two remote qubits under general local single...It is known that the inevitable interaction of the entangled qubits with their environments may result in the degradation of quantum correlation.We study the decoherence of two remote qubits under general local single-and two-sided amplitude-damping channel(ADC).By using concurrence,quantum discord and Clauser-Horne-ShimonyHolt(CHSH)inequality,we find that the relation between the residual quantum correlations and the initial ones are different.Recently,Wang et al.[Int.J.Theor.Phys.54(2015)5]showed that there exist a set of partially entangled states that are more robust than maximally entangled states in terms of the residual quantum correlation measured by concurrence,fully entangled fraction and quantum discord,respectively.Here we find that both in single-and two-sided ADC,only the evolution of CHSH inequality with the initial parameter is proportional to that of the initial nonlocality.That means the initial state with maximally nonlocality will retain its role in the evolution.It implies that the evolution of nonlocality may reveal the characteristics of quantum state better.Furthermore,we discuss the evolutions of the three different quantum measurements with the initial parameter under generalized amplitude damping channel(GADC)and find that they are all proportional to that of the initial state.展开更多
文摘The relationship between gain and carrier density is analysed. In the quantum well (QW) lasers, initially, the gain increases rapidly with the carrier density and then starts to saturate. It can be seen that QW lasers have a higher differential gain because of the step-like state density, and that the gain saturates at higher carrier densities because of the constant state density of the lowest subband. It is shown that simple logarithmic gain-carrier density is more accurate than the traditional linearized form for a QW laser.
基金Supported in part by the National Science Foundation of China under Grant Nos.90503002 and 10821504by the National Basic Research Program of China under Grant No.2010CB833000
文摘The associated production of Z boson and a pair of new quarks at the Large Hadron Collider (LHC) is studied. The cross sections for both sequential fermions and vector-like fermions are presented. It is found that for sequential fermions the cross sections can reach 1 - 10^2 /b for heavy quark mass mQ from 1000 GeV to 200 GeV. For vector-like quarks, the cross sections are suppressed by mixing parameter sin OL. Focusing on process pp → b'b', we investigate the possibility of detecting the 6l 4- 2j signal. For a b' with light mass and a large branching ratio of b' → bZ, it is found that only several signal events ( parton level ) can be produced with 1000 fb^-1 integrated luminosity. Although the signal events are rare, all the final states are produced centrally and multi lepton final states are clear at hadron collider, which could be easily detected.
基金supported by the National Natural Science Foundation of China (Grant No. 10974107)
文摘We have investigated the general relativistic field equations for neutron stars.We find that there are solutions for the equilibriummass distribution without a maximum mass limit.The solutions correspond to stars with a void inside their centers.In thesesolutions,the mass density and pressure increase first from zero at the inner radius to a peak and then decrease to zero at the outerradius.With the change of the void boundary,the mass and particle number of the star can approach infinity.Neutron stars withlarge masses can remain stable and do not collapse into black holes.
基金Supported by National Natural Science Foundation of China under Grant Nos.11204002,11274010,61073048,11005029the Specialized Research Fund for the Doctoral Program of Higher Education(20123401120003,20113401110002)+2 种基金the Key Project of Chinese Ministry of Education(Nos.211080,210092)the Key Program of the Education Department of Anhui Province under Grant No.KJ2012A020the"211"Project of Anhui University,the Talent Foundation of Anhui University,the personnel department of Anhui province
文摘It is known that the inevitable interaction of the entangled qubits with their environments may result in the degradation of quantum correlation.We study the decoherence of two remote qubits under general local single-and two-sided amplitude-damping channel(ADC).By using concurrence,quantum discord and Clauser-Horne-ShimonyHolt(CHSH)inequality,we find that the relation between the residual quantum correlations and the initial ones are different.Recently,Wang et al.[Int.J.Theor.Phys.54(2015)5]showed that there exist a set of partially entangled states that are more robust than maximally entangled states in terms of the residual quantum correlation measured by concurrence,fully entangled fraction and quantum discord,respectively.Here we find that both in single-and two-sided ADC,only the evolution of CHSH inequality with the initial parameter is proportional to that of the initial nonlocality.That means the initial state with maximally nonlocality will retain its role in the evolution.It implies that the evolution of nonlocality may reveal the characteristics of quantum state better.Furthermore,we discuss the evolutions of the three different quantum measurements with the initial parameter under generalized amplitude damping channel(GADC)and find that they are all proportional to that of the initial state.