The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The r...The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The results show that haze days occur significantly more often in eastern China than in western China.The annual number of haze days is 5–30 d in most parts of central-eastern China,with some areas experiencing more than 30 d,while less than 5 d are averagely occurring in western China.Haze days are mainly concentrated in the winter half-year,with most in winter,followed by autumn,spring,and then summer.Nearly 20%of annual haze days are experienced in December.The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961–2012.There were great increases in haze days in the 1960s,1970s and the beginning of the 21st century.There was also significant abrupt changes of haze days in the early 1970s and 2000s.From 1961 to 2012,haze days in the winter half-year increased in South China,the middle-lower reaches of the Yangtze River,and North China,but decreased in Northeast China,eastern Northwest China and eastern Southwest China.The number of persistent haze is rising.The Longer the haze,the greater the proportion to the number persistent haze.Certain climatic conditions exacerbated the occurrence of haze.The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China.The precipitation days show a decreasing trend in most parts of China,with a rate of around–4.0 d per decade in central-eastern China,which reduces the sedimentation capacity of atmospheric pollutants.During the period of 1961–2012,the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China,while there exists positive correlation between haze days and breeze days in the winter half-year.The mean wind speed and strong wind days are decreasing,while breeze days are increasing in most parts of China,which is benefitial to the reduction of the pollutants diffusion capacity.As a result,haze occurs more easily.展开更多
This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studi...This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studies) and CMM5 (the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA, NCAR Mesoscale Model) to simulate the near-surface-layer winds (10 m above surface) all over China in the late 20th century. Results suggest that like global climate models (GCMs), these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country. However, RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed. In view of their merits, these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century. The results show that 1) summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2) annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3) the changes of summer mean wind speed for 2081-2100 are uncertain. As a result, although climate models are absolutely necessary for projecting climate change to come, there are great uncertainties in projections, especially for wind speed, and these issues need to be further explored.展开更多
基金supported by the National Basic Research Program of China(No.2012CB955902)
文摘The characteristics of haze days and the climatic background are analyzed by using daily observations of haze,precipitation,mean and maximum wind speed of 664 meteorological stations for the period of 1961–2012.The results show that haze days occur significantly more often in eastern China than in western China.The annual number of haze days is 5–30 d in most parts of central-eastern China,with some areas experiencing more than 30 d,while less than 5 d are averagely occurring in western China.Haze days are mainly concentrated in the winter half-year,with most in winter,followed by autumn,spring,and then summer.Nearly 20%of annual haze days are experienced in December.The haze days in central-eastern China in the winter half-year have a significant increasing trend of 1.7 d per decade during 1961–2012.There were great increases in haze days in the 1960s,1970s and the beginning of the 21st century.There was also significant abrupt changes of haze days in the early 1970s and 2000s.From 1961 to 2012,haze days in the winter half-year increased in South China,the middle-lower reaches of the Yangtze River,and North China,but decreased in Northeast China,eastern Northwest China and eastern Southwest China.The number of persistent haze is rising.The Longer the haze,the greater the proportion to the number persistent haze.Certain climatic conditions exacerbated the occurrence of haze.The correlation coefficient between haze days and precipitation days in the winter half-year is mainly negative in central-eastern China.The precipitation days show a decreasing trend in most parts of China,with a rate of around–4.0 d per decade in central-eastern China,which reduces the sedimentation capacity of atmospheric pollutants.During the period of 1961–2012,the correlation coefficients between haze days and mean wind speed and strong wind days are mainly negative in central-eastern China,while there exists positive correlation between haze days and breeze days in the winter half-year.The mean wind speed and strong wind days are decreasing,while breeze days are increasing in most parts of China,which is benefitial to the reduction of the pollutants diffusion capacity.As a result,haze occurs more easily.
基金Under the jointly auspices of the Special Public Research for Meteorological Industry (No. GYHY200806009)Wind Energy Resources Detailed Survey and Assessment WorkEU-China Energy and Environment Program (No. Europe Aid/ 123310/D/Ser/CN)
文摘This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studies) and CMM5 (the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA, NCAR Mesoscale Model) to simulate the near-surface-layer winds (10 m above surface) all over China in the late 20th century. Results suggest that like global climate models (GCMs), these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country. However, RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed. In view of their merits, these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century. The results show that 1) summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2) annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3) the changes of summer mean wind speed for 2081-2100 are uncertain. As a result, although climate models are absolutely necessary for projecting climate change to come, there are great uncertainties in projections, especially for wind speed, and these issues need to be further explored.