研究了生长期和植株性别对工业大麻杆纤维形态的影响。利用富兰克林离析法分离纤维,Motic Images Plus 2.0图像处理系统软件测量纤维形态,分析大麻杆纤维形态如纤维长度、宽度、壁厚、细胞腔在不同生长期和不同性别植株中的变化趋势。...研究了生长期和植株性别对工业大麻杆纤维形态的影响。利用富兰克林离析法分离纤维,Motic Images Plus 2.0图像处理系统软件测量纤维形态,分析大麻杆纤维形态如纤维长度、宽度、壁厚、细胞腔在不同生长期和不同性别植株中的变化趋势。结果表明随着生长期的延长,其纤维的长度、宽度、细胞腔和细胞壁均有增大的趋势;植株性别对纤维形态也有显著的影响。工业大麻具有生长速度快、纤维形态较好的优点,可广泛的被用于制浆造纸、制备复合材料等领域。展开更多
Strength properties of laboratory scale lime-based samples enhanced with additives such as nanomaterials(nanofibrillated cellulose,nanosilica,nanoclay,expanded graphite),hemp&glass fibres,hemp shiv and polyvinyl a...Strength properties of laboratory scale lime-based samples enhanced with additives such as nanomaterials(nanofibrillated cellulose,nanosilica,nanoclay,expanded graphite),hemp&glass fibres,hemp shiv and polyvinyl acetate(PVAc)are determined.Samples were cured for 26 days in air at 20℃/60%RH after casting before being oven dried for a further two days at 50℃(28 days total).Results show that the nanomaterials on their own had a mixed effect on the strength although nSiO_(2) as a solo additive performed exceptionally well.The combination of fibres in conjunction with PVAc also greatly enhanced the strength due to increased bond between the fibres and the matrix.In addition,Greenhouse Gas emissions(GHG,kgCO_(2)eq)of an arbitrary block was determined for all composites and compared to the GHG of a commonly used lightweight aerated concrete block.Comparison of the normalised compressive strengths to the different loading conditions as outlined in BS EN 8103 shows that a more widespread use of pre-cast lime composites is possible and without unduly increasing GHG emissions.展开更多
文摘研究了生长期和植株性别对工业大麻杆纤维形态的影响。利用富兰克林离析法分离纤维,Motic Images Plus 2.0图像处理系统软件测量纤维形态,分析大麻杆纤维形态如纤维长度、宽度、壁厚、细胞腔在不同生长期和不同性别植株中的变化趋势。结果表明随着生长期的延长,其纤维的长度、宽度、细胞腔和细胞壁均有增大的趋势;植株性别对纤维形态也有显著的影响。工业大麻具有生长速度快、纤维形态较好的优点,可广泛的被用于制浆造纸、制备复合材料等领域。
基金supported by the Iraqi Ministry of Higher Education and Scientific Research and Iraqi Cultural Attache in London,who supported the research studies for F.J.Khalaf.
文摘Strength properties of laboratory scale lime-based samples enhanced with additives such as nanomaterials(nanofibrillated cellulose,nanosilica,nanoclay,expanded graphite),hemp&glass fibres,hemp shiv and polyvinyl acetate(PVAc)are determined.Samples were cured for 26 days in air at 20℃/60%RH after casting before being oven dried for a further two days at 50℃(28 days total).Results show that the nanomaterials on their own had a mixed effect on the strength although nSiO_(2) as a solo additive performed exceptionally well.The combination of fibres in conjunction with PVAc also greatly enhanced the strength due to increased bond between the fibres and the matrix.In addition,Greenhouse Gas emissions(GHG,kgCO_(2)eq)of an arbitrary block was determined for all composites and compared to the GHG of a commonly used lightweight aerated concrete block.Comparison of the normalised compressive strengths to the different loading conditions as outlined in BS EN 8103 shows that a more widespread use of pre-cast lime composites is possible and without unduly increasing GHG emissions.