With the development of high-resolution and multi-scale unified numerical model, some of techniques about non-hydrostatic meso-scale numerical weather prediction are addressed. The impact of the vertical coordinate sy...With the development of high-resolution and multi-scale unified numerical model, some of techniques about non-hydrostatic meso-scale numerical weather prediction are addressed. The impact of the vertical coordinate system is one of them. In this paper, based on a WRF (Weather Research and Forecast) model, the impact on the calculation of vertical velocity was studied with different vertical coordinates. The simulation results showed that the calculation of vertical velocity is sensitive to vertical coordinates. It is especially more evident when the resolution increased. Due to the close relationships between vertical velocity and precipitation, the difference of vertical velocity inevitably influences model’s description of precipitation. An ideal experiment exhibits that pressure gradient force computations in the pressure terrain- following coordinate are sensitive to surface pressure.展开更多
Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. ...Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. 01° x 0. 01°x lm grid. A shallow 3-D shear wave velocity structure of Tianjin coastal area is obtained. According to the data and geological background, we selected two typical velocity profiles to try to introduce and explain its relationship to basement structure. The results show that the shear wave velocity structure clearly presents the characteristic of stratification and lateral inhomogeneity. Furthermore, the difference of the shear wave structure between tectonic elements is clear and the velocity structure between the two sides of the local or border fault in the Quaternary is disturbed or affected significantly. It intuitively shows that the basement structure and fault activity of this region had good control of sedimentation development and strata formation in the Quaternary period which would have an important effect on engineering seismic and geological condition evaluation.展开更多
基金Innovative Research on the Techniques of Numerical Meteorological Forecasting Systems inChina - a National Key Scientific and Technological Project for the 10th Five-year Economic Development Plan(2001BA607B02) Research on topographic effects by the Chinese Academy of Meteorological Sciences(7048/2002-9y-1)
文摘With the development of high-resolution and multi-scale unified numerical model, some of techniques about non-hydrostatic meso-scale numerical weather prediction are addressed. The impact of the vertical coordinate system is one of them. In this paper, based on a WRF (Weather Research and Forecast) model, the impact on the calculation of vertical velocity was studied with different vertical coordinates. The simulation results showed that the calculation of vertical velocity is sensitive to vertical coordinates. It is especially more evident when the resolution increased. Due to the close relationships between vertical velocity and precipitation, the difference of vertical velocity inevitably influences model’s description of precipitation. An ideal experiment exhibits that pressure gradient force computations in the pressure terrain- following coordinate are sensitive to surface pressure.
基金jointly sponsored by the Special Program of Science and Technology Innovation of Tianjin Municipality ( 07FDZDSF02102 )the Geological Program of Mineral Resources Compensation of Tianjin Municipality,China
文摘Shear wave velocity is one of the important dynamic characteristics of soil layers and applied widely in aseismic engineering. In this paper, 500 drill logging data are used to make a linear interpolation based on 0. 01° x 0. 01°x lm grid. A shallow 3-D shear wave velocity structure of Tianjin coastal area is obtained. According to the data and geological background, we selected two typical velocity profiles to try to introduce and explain its relationship to basement structure. The results show that the shear wave velocity structure clearly presents the characteristic of stratification and lateral inhomogeneity. Furthermore, the difference of the shear wave structure between tectonic elements is clear and the velocity structure between the two sides of the local or border fault in the Quaternary is disturbed or affected significantly. It intuitively shows that the basement structure and fault activity of this region had good control of sedimentation development and strata formation in the Quaternary period which would have an important effect on engineering seismic and geological condition evaluation.