建筑信息模型(Building Information Modeling,简称BIM)是建筑设施物理和功能特征的数字化表示。它以三维模型为基础,使项目利益相关者协同设计,并能通过分析软件进行性能分析和仿真模拟。天文光学望远镜作为科学驱动下的定制设备,结构...建筑信息模型(Building Information Modeling,简称BIM)是建筑设施物理和功能特征的数字化表示。它以三维模型为基础,使项目利益相关者协同设计,并能通过分析软件进行性能分析和仿真模拟。天文光学望远镜作为科学驱动下的定制设备,结构复杂、研发周期长,在全生命周期均可采用BIM。本文根据天文望远镜项目开发需求,制定BIM应用的工作流程,期望利用BIM的优势,实现提高工作效率,降低成本的目标。展开更多
文摘南极Dome A(冰穹A)因其优良的观测条件被誉为地球上最好的天文观测台址之一。Dome A温度常年处于-30^-80℃,相对湿度40%~80%,温度起伏大,望远镜镜面易结霜,影响天文观测的效率和质量。为实现无人值守的智能化镜面除霜、减少除霜对观测时间的占用、降低除霜对镜面视宁度的影响、减少除霜对能源的消耗,提出了智能化除霜方法。首先,分析环境、科学数据、仪器三者的关系,利用外部输入非线性自回归(nonlinear auto regressive models with exogenous input,NARX)时间序列神经网络构建望远镜镜面状态的预测模型;其次,设计南极望远镜智能化除霜仿真系统,实时预测镜面情况,根据预测结果模拟采取相应的应对措施。结果表明该方法能有效实现智能化除霜,减少了人为干预,节约了观测时间,提高了望远镜运行的可靠性。
文摘建筑信息模型(Building Information Modeling,简称BIM)是建筑设施物理和功能特征的数字化表示。它以三维模型为基础,使项目利益相关者协同设计,并能通过分析软件进行性能分析和仿真模拟。天文光学望远镜作为科学驱动下的定制设备,结构复杂、研发周期长,在全生命周期均可采用BIM。本文根据天文望远镜项目开发需求,制定BIM应用的工作流程,期望利用BIM的优势,实现提高工作效率,降低成本的目标。