Upward lightning flashes initiated simultane- ously from two towers separated by a distance of 3420 m were analyzed in detail based on high-speed camera images and S-band Doppler radar echo intensity. Both discharges ...Upward lightning flashes initiated simultane- ously from two towers separated by a distance of 3420 m were analyzed in detail based on high-speed camera images and S-band Doppler radar echo intensity. Both discharges lasted more than 250 ms and were self-initiated from the towers in the form of upward positive leaders with a time difference of less than 4 ms. Abundant recoil leaders oc- curred transiently in the remnant channel sections during the development of the upward lightning. The number of recoil leaders over the lower tower was greater than over the higher tower. When the concurrent upward flashes occurred, the radar echo intensity in the area of the towers was no more than 45 dBZ and the towers were separately located beneath two echo centers with low altitudes of 2-3 kin.展开更多
基金supported by the National Basic Research Program of China (Grant No.2014CB441405)the National Natural Science Foundation of China (Grant No.41375012)
文摘Upward lightning flashes initiated simultane- ously from two towers separated by a distance of 3420 m were analyzed in detail based on high-speed camera images and S-band Doppler radar echo intensity. Both discharges lasted more than 250 ms and were self-initiated from the towers in the form of upward positive leaders with a time difference of less than 4 ms. Abundant recoil leaders oc- curred transiently in the remnant channel sections during the development of the upward lightning. The number of recoil leaders over the lower tower was greater than over the higher tower. When the concurrent upward flashes occurred, the radar echo intensity in the area of the towers was no more than 45 dBZ and the towers were separately located beneath two echo centers with low altitudes of 2-3 kin.