期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
复杂天气条件下光伏电站太阳辐射量短期预测
1
作者 宋晓通 卢艺玮 +1 位作者 师芊芊 梅杨 《科学技术与工程》 北大核心 2024年第30期12985-12995,共11页
复杂天气条件下,天气变化波动较大;光伏电站传统太阳辐射量预测模型无法很好地处理复杂的非线性关系,存在精度不足的缺陷,给电力系统的保护和并网安全带来了挑战。为了应对这一挑战,建立了一种基于自适应模糊神经网络(adaptive-network-... 复杂天气条件下,天气变化波动较大;光伏电站传统太阳辐射量预测模型无法很好地处理复杂的非线性关系,存在精度不足的缺陷,给电力系统的保护和并网安全带来了挑战。为了应对这一挑战,建立了一种基于自适应模糊神经网络(adaptive-network-based fuzzy inference systems,ANFIS)的太阳辐射量预测模型。该模型引入了卫星遥感数据作为输入量,以补充传统的气象数据。首先,使用样本熵计算法对复杂天气进行判定;其次,采用自回归移动平均(auto regression integrated moving average,ARIMA)模型,预测未来24 h的云团光学厚度和气溶胶光学厚度这两种关键的卫星遥感数据。结合大气层上界的太阳辐射量和大气平均温度,建立了基于ANFIS的太阳能辐射量预测模型,从而得到未来24 h的太阳能辐射量预测结果。在算例研究中,将ANFIS模型与多层前馈(back propagation,BP)神经网络预测模型、长短期记忆(long short-term memory,LSTM)神经网络预测模型在不同天气类型中的精度进行了对比。结果表明,在简单天气条件下,ANFIS模型、BP模型、LSTM模型的均方根误差分别为0.1122、0.3184、0.2534 W/m^(2),三者相对较小且相差不大;在复杂天气条件中,ANFIS模型的均方根误差为0.8606 W/m^(2),比BP模型和LSTM模型分别降低了4.0396、2.0252 W/m^(2),这说明ANFIS模型在复杂天气条件下表现较好,能够适应具有较强波动性的数据。研究同时表明,在考虑气象数据的基础上计及卫星遥感数据,可将预测的均方根误差降低0.132 W/m^(2),进一步改进了预测精度。 展开更多
关键词 复杂天气 太阳辐射量预测 气象卫星数据 自适应模糊神经网络 自回归移动平均模型
下载PDF
基于SARIMA模型和条件植被温度指数的干旱预测 被引量:23
2
作者 田苗 王鹏新 +1 位作者 韩萍 张树誉 《农业机械学报》 EI CAS CSCD 北大核心 2013年第2期109-116,共8页
基于时间序列遥感数据反演的条件植被温度指数(VTCI)干旱监测结果,应用季节性求和自回归移动平均模型(SARIMA)对关中平原进行了分区域干旱预测建模,得到了2009年4月上旬至5月下旬每旬1步、2步和3步共18旬的预测结果,并分析了预测精度。... 基于时间序列遥感数据反演的条件植被温度指数(VTCI)干旱监测结果,应用季节性求和自回归移动平均模型(SARIMA)对关中平原进行了分区域干旱预测建模,得到了2009年4月上旬至5月下旬每旬1步、2步和3步共18旬的预测结果,并分析了预测精度。结果表明,SARIMA模型的预测精度随着预测步数的增加而降低,6旬1步预测结果的绝对误差频数分布基本是单峰分布,主要分布在-0.2到0.2之间;6旬2步预测结果的绝对误差频数分布出现双峰分布,3步预测结果绝对误差分布分散,且误差变大。通过分析干旱的时空分布规律,发现关中平原地区干旱具有较明显的区域特征,且1步预测和2步预测结果的干旱时空分布与监测结果较吻合,3步预测结果的不确定性较大,由此得出SARIMA模型适用于关中平原VTCI 1~2步预测研究的结论。 展开更多
关键词 关中平原 干旱预测 条件植被温度指数 季节性求和自回归移动平均模型
下载PDF
小波分析和考虑外生变量的广义自回归条件异方差模型在电价预测中的应用 被引量:6
3
作者 刘达 王尔康 牛东晓 《电网技术》 EI CSCD 北大核心 2009年第18期99-104,共6页
电力市场中的电价序列存在很大的随机波动和价格尖峰。文章提出根据电价序列的变化特点,通过小波变换将其分解为概貌序列和细节序列,从而在不同尺度上反映电价的变化规律。通过概貌分量找出电价的主要波动规律,并由此对电价进行预测,剔... 电力市场中的电价序列存在很大的随机波动和价格尖峰。文章提出根据电价序列的变化特点,通过小波变换将其分解为概貌序列和细节序列,从而在不同尺度上反映电价的变化规律。通过概貌分量找出电价的主要波动规律,并由此对电价进行预测,剔除细节分量所反映的电价的随机波动影响。建立考虑异方差的广义自回归条件异方差模型(generalized autoregressive conditional heteroscedasticity,GARCH)对概貌序列建模,并在GARCH模型中加入外生变量形成GARCHX模型,以弥补传统时间序列模型忽略外界影响的缺陷。对美国PJM电力市场的实例研究表明,所建立的W-GARCHX模型比传统时间序列模型的预测精度有明显提高。 展开更多
关键词 电力市场 电价预测 小波分析 广义自回归条件 异方差(GARCH) 自回归移动平均(ARMA)
下载PDF
基于条件植被温度指数的夏玉米生长季干旱预测研究 被引量:9
4
作者 李俐 许连香 +2 位作者 王鹏新 齐璇 王蕾 《农业机械学报》 EI CAS CSCD 北大核心 2020年第1期139-147,共9页
为验证条件植被温度指数(VTCI)在夏玉米生长季干旱预测中的适用性,以河北中部平原为研究区,应用求和自回归移动平均(ARIMA)模型及季节性求和自回归移动平均(SARIMA)模型,对该地区VTCI时间序列数据进行分析建模预测。首先基于49个气象站... 为验证条件植被温度指数(VTCI)在夏玉米生长季干旱预测中的适用性,以河北中部平原为研究区,应用求和自回归移动平均(ARIMA)模型及季节性求和自回归移动平均(SARIMA)模型,对该地区VTCI时间序列数据进行分析建模预测。首先基于49个气象站点所在像素的VTCI时间序列数据,选取不同长度时间序列建立ARIMA模型,并分析时间序列长度与预测精度间关系,以期为时间序列长度选择提供依据;然后选择理想长度的VTCI时间序列数据,分别建立ARIMA模型和SARIMA模型,用于研究区域2017年夏玉米生长季VTCI预测,并分析评价两模型预测精度;最后采用性能较好的ARIMA模型逐像素建模预测,得到2016-2018年9月上旬至下旬VTCI预测结果。结果表明:基于ARIMA模型的VTCI预测精度与时间序列长度未呈现明显的相关关系,但随时间序列长度增加,模型预测精度逐渐趋于稳定;ARIMA模型对干旱的预测精度高于基于SARIMA模型,其1步、2步、3步VTCI预测结果均方根误差较SARIMA模型分别降低0. 06、0. 07、0. 09;ARIMA模型在不同年份夏玉米生长季VTCI1~3步的预测精度稳定性较好,2016-2018年1步、2步和3步VTCI预测结果绝对误差绝对值大于0. 20的像素平均百分比分别为5. 84%、6. 38%、8. 72%。 展开更多
关键词 夏玉米 条件植被温度指数 求和自回归移动平均模型 季节性求和自回归移动平均模型 干旱预测
下载PDF
基于改进WCMA的短时太阳能能量预测方法 被引量:1
5
作者 李敏 肖扬 熊灿 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第10期92-99,共8页
针对天气剧烈变化时,采集太阳能进行供电的传感节点能量预测误差增大、预测精度降低的问题,提出了基于改进WCMA的短时太阳能能量预测方法。首先,根据存储的能量轮廓与当天收集的能量值的平均绝对误差最小的原则,选择最相似天气,用最相... 针对天气剧烈变化时,采集太阳能进行供电的传感节点能量预测误差增大、预测精度降低的问题,提出了基于改进WCMA的短时太阳能能量预测方法。首先,根据存储的能量轮廓与当天收集的能量值的平均绝对误差最小的原则,选择最相似天气,用最相似天气中相应时隙的能量值替代前一时隙采集的能量值,与天气条件因子构成的增量部分线性组合成能量预测模型。其次,设置了动态权重因子来实时调整前一时刻能量值和当前时刻增量值之间的权重,使得权重因子能跟随天气变化及时反应预测模型中各组成部分的贡献度,进一步提高预测精度。实验结果表明,相比其他预测方法,在天气短时剧烈变化时,所提方法具有更小的预测误差、更高的预测精度。 展开更多
关键词 无线传感器网络 太阳能 能量收集 能量预测 天气条件移动平均预测
下载PDF
基于ARIMA-GARCH模型的生育率随机预测 被引量:2
6
作者 封铁英 罗天恒 《统计与决策》 CSSCI 北大核心 2015年第24期21-24,共4页
文章针对传统确定性预测方法的局限性,提出了一种基于随机理论和时间序列分析的生育率随机预测ARIMA-GARCH建模与仿真方法,通过模拟时间序列随机波动特征来估计生育率的未来值和预测区间。以中国总和生育率为例,应用ARIMA-GARCH模型对... 文章针对传统确定性预测方法的局限性,提出了一种基于随机理论和时间序列分析的生育率随机预测ARIMA-GARCH建模与仿真方法,通过模拟时间序列随机波动特征来估计生育率的未来值和预测区间。以中国总和生育率为例,应用ARIMA-GARCH模型对生育率序列随机过程进行预测,分析残差项之间的自相关性和异方差效应,以避免单一模型拟合导致的重要细节信息损失。提出了应对中国长期持续低生育率的相关对策建议,以期为生育政策的调整和完善提供决策依据和实践参考。 展开更多
关键词 自回归求和移动平均(ARIMA)模型 广义自回归条件异方差(GARCH)模型 生育率 随机预测
下载PDF
国内波动率预测的知识图谱研究
7
作者 王翔 《现代商业》 2021年第12期82-86,共5页
本文以核心期刊中2000年~2019年273篇波动率预测的论文为研究对象,基于关键词的聚类分析、关键词的演化路径分析、关键词的中心度排序分析,以及关键词的突现分析,对国内波动率预测的研究现状进行了综述。研究结果显示:(1)目前国内波动... 本文以核心期刊中2000年~2019年273篇波动率预测的论文为研究对象,基于关键词的聚类分析、关键词的演化路径分析、关键词的中心度排序分析,以及关键词的突现分析,对国内波动率预测的研究现状进行了综述。研究结果显示:(1)目前国内波动率预测研究主要形成了波动率预测模型基础、波动率预测模型和波动率预测模型应用三类知识群组;(2)波动率的演化路径就是两类,一类是已实现波动率和历史波动率的预测研究,一类是隐含的波动率的预测研究;(3)“风险管理”和“杠杆效应”成为当前波动率预测研究的前沿。 展开更多
关键词 波动率 预测 广义自回归条件异方差模型 自回归积分移动平均 异质自回归模型
下载PDF
时间序列模型预测大气臭氧浓度 被引量:5
8
作者 王一龙 董韶妮 +1 位作者 孙丽萍 王上 《济南大学学报(自然科学版)》 CAS 北大核心 2023年第2期178-183,共6页
为了给大气污染防治预警预报提供参考,利用时间序列模型对大气臭氧浓度进行预测;以2020年1月1日至2020年12月31日期间366个烟台市区大气臭氧日均质量浓度作为研究数据,建立自回归移动平均模型,引入广义自回归条件异方差模型消除时间序... 为了给大气污染防治预警预报提供参考,利用时间序列模型对大气臭氧浓度进行预测;以2020年1月1日至2020年12月31日期间366个烟台市区大气臭氧日均质量浓度作为研究数据,建立自回归移动平均模型,引入广义自回归条件异方差模型消除时间序列自回归条件异方差效应,最终构建自回归移动平均-广义自回归条件异方差时间序列模型,并对2021年1月烟台市区的大气臭氧日均浓度进行预测。结果表明,所构建的时间序列模型对大气臭氧浓度的短期预测值与实测值基本一致,但随着预测期数的增加,预测值与实测值的相对误差逐渐增大。 展开更多
关键词 臭氧浓度预测 时间序列模型 自回归移动平均模型 广义自回归条件异方差模型
下载PDF
应用条件植被温度指数预测县域尺度小麦单产 被引量:8
9
作者 王蕾 王鹏新 +3 位作者 李俐 张树誉 白雪娇 解毅 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2018年第10期1566-1573,共8页
选取关中平原2008-2016年的条件植被温度指数(vegetation temperature condition index,VTCI)遥感干旱监测结果,基于最优的干旱影响评估方法确定冬小麦各生育时期干旱对其单产的影响权重,构建县域尺度加权VTCI与小麦单产间的一元线性回... 选取关中平原2008-2016年的条件植被温度指数(vegetation temperature condition index,VTCI)遥感干旱监测结果,基于最优的干旱影响评估方法确定冬小麦各生育时期干旱对其单产的影响权重,构建县域尺度加权VTCI与小麦单产间的一元线性回归模型,并结合求和自回归移动平均模型(autoregressive integrated moving average,ARIMA)对各县(区)的冬小麦单产进行估测及向前一、二、三旬的预测。结果表明,基于改进的层次分析法与熵值法的最优组合赋权法对冬小麦各生育时期的权重确定较合理,以拔节期(0.489)最大,抽穗-灌浆期(0.427)次之,返青期(0.035)与乳熟期(0.049)较小;加权VTCI与小麦单产之间的相关性显著,单产估测精度较高;向前一、二、三旬的单产预测精度均较高,且以向前一旬的预测精度最高,有76.9%的相对误差小于2.0%,71.6%的均方根误差小于75.0kg/hm2。 展开更多
关键词 条件植被温度指数 求和自回归移动平均模型 县域尺度 冬小麦单产 预测精度
原文传递
考虑异方差效应的风电不确定性建模及其在调度中的应用 被引量:13
10
作者 李力行 苗世洪 +3 位作者 涂青宇 李姚旺 李超 段偲默 《电力系统自动化》 EI CSCD 北大核心 2020年第8期36-47,共12页
随着风电在电力系统中渗透率的不断提升,其不确定性为电网的安全经济运行带来了重大挑战。为获得精准的风电不确定性模型,帮助运行人员实现系统的安全经济运行,文中提出了考虑异方差效应的风电预测误差条件概率分布建模方法。首先,分析... 随着风电在电力系统中渗透率的不断提升,其不确定性为电网的安全经济运行带来了重大挑战。为获得精准的风电不确定性模型,帮助运行人员实现系统的安全经济运行,文中提出了考虑异方差效应的风电预测误差条件概率分布建模方法。首先,分析了风电预测误差与各类因素的相依性水平,并基于分析结果与动态Copula理论,建立了风电波动性与风电预测误差的动态相依性模型;之后,针对边缘分布所显示出的时域特征,结合差分整合移动平均自回归(ARIMA)模型与广义自回归条件异方差(GARCH)模型,考虑异方差效应,建立了时变边缘分布模型;最后,将两模型相结合,给出了不同波动水平下的风电条件预测误差分布情况,并在不确定性机组组合模型中进行验证,证明了模型的有效性。 展开更多
关键词 动态Copula 广义自回归条件异方差 差分整合移动平均自回归 预测误差 机组组合
下载PDF
2008-2015年宁波市流感样病例预测模型分析 被引量:7
11
作者 许国章 王春丽 +4 位作者 李永东 倪红霞 焦素黎 张妹 王仁元 《国际流行病学传染病学杂志》 CAS 2016年第1期30-34,共5页
目的:建立宁波市流感样病例(ILI)的预测模型,并对所建模型预测效果进行验证和评价。方法收集2008年1月至2015年6月宁波市流感监测哨点医院 ILI 监测资料,对数据进行统计分析,建立ARIMA模型及ARIMA-GARCH模型对流感发病情况进行预... 目的:建立宁波市流感样病例(ILI)的预测模型,并对所建模型预测效果进行验证和评价。方法收集2008年1月至2015年6月宁波市流感监测哨点医院 ILI 监测资料,对数据进行统计分析,建立ARIMA模型及ARIMA-GARCH模型对流感发病情况进行预测和评价。结果2008—2014年宁波市ILI累计报告101056例,发病率大致呈逐年下降趋势。针对ILI发病率的ARIMA模型构建中ARIMA(2,1,1)(1,1,1)12为最佳模型(BIC=6.250),白噪声残差分析得到Ljung-Box统计量Q值为6.027(P〉0.05)。ARIMA-GARCH组合模型的预测效果较单一ARIMA模型理想,平均绝对误差分别为11.049和12.757。结论 ARIMA-GARCH模型可以模拟宁波地区流感的流行趋势,为流感防控策略的制定提供理论依据。 展开更多
关键词 流感 自回归移动平均模型 广义自回归条件异方差模型 预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部