利用海洋-大气-海浪耦合模式COAWST进行了两组以东海区域为中心的72 h模拟试验。通过对比考虑动态海浪过程与未考虑该过程的试验结果,分析动态海浪过程对短期天气模拟的影响。结果表明,考虑动态海浪过程后将增强海表感热、潜热通量的模...利用海洋-大气-海浪耦合模式COAWST进行了两组以东海区域为中心的72 h模拟试验。通过对比考虑动态海浪过程与未考虑该过程的试验结果,分析动态海浪过程对短期天气模拟的影响。结果表明,考虑动态海浪过程后将增强海表感热、潜热通量的模拟,造成海表大气增暖增湿。这一暖湿差异将促进大气垂向运动的发展,造成海平面低压发展,并进一步影响大气流场的变化,增强局地升温效果,有利于形成正反馈。该暖湿差异在南海西北部与菲律宾海域最为明显,且随高度上升逐渐减弱,至500 h Pa高度时差异基本消失。展开更多
无论对于自然的还是人为管理的生态系统,天气都是最重要的一种环境条件。用系统分析方法对生态系统进行的研究使天气模拟越来越成为非常必要的了。本文首先介绍了一个美国天气模拟模型(WGEN)的数学原理。它用马尔柯夫链和Γ-分布组成降...无论对于自然的还是人为管理的生态系统,天气都是最重要的一种环境条件。用系统分析方法对生态系统进行的研究使天气模拟越来越成为非常必要的了。本文首先介绍了一个美国天气模拟模型(WGEN)的数学原理。它用马尔柯夫链和Γ-分布组成降水量子模型,产生逐日降水量。用弱平稳过程和调和分析为工具建立另一个子模型,产生逐日最高温度、最低温度和太阳辐射量。通过常规的统计学方法或灰靶白化方法可以估计模型参数。于是,就可由WGEN生出Alabama州天气模型ALWGEN和北京天气模型BJWGEN。考虑到篇幅有限,本文没有具体介绍上述估计方法,也只是扼要介绍了用Monte Carlo Bootstrap方法进行模型校验和验证的问题。最后,简单地讨论了天气模拟模型的应用。如IPM研究中的风险分析,生态系统管理决策,农业生态区域规划等课题,对天气模型都有现实的或潜在的需要。展开更多
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore struct...Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.展开更多
In order to reduce waiting time in port for large LNG (liquefied natural gas) fueled ships, it is suggested that LNG STS (ship to ship) bunkering and cargo loading/unloading should be carried out simultaneously. T...In order to reduce waiting time in port for large LNG (liquefied natural gas) fueled ships, it is suggested that LNG STS (ship to ship) bunkering and cargo loading/unloading should be carried out simultaneously. This study investigated the safety zone of an LNG bunkering vessel with 10,000 cubic meters capacity transferring LNG fuel to an LNG fueled 18,000 TEU containership. Four LNG leakage scenarios were identified based on failure frequencies analysis of piping systems and severity of consequence, three-dimension CFD software FLACS was adopted to calculate flammable cloud dispersion after LNG leakage. As a result, we obtained a rectangle dangerous zone (41.3 m ~ 126 m), outside of this dangerous zone can be def'med as safety zone. It is concluded that safety zone of LNG STS bunkering and cargo loading/unloading SIMOPS (simultaneous operations) cannot keep the same, there are different results for different designs and operation locations. Due to high frequencies and severe consequences, two typical scenarios, the leakage of LNG hose and the natural gas releases from bunkering tank's safety relief valve during bunkering, cannot be ignored in similar study.展开更多
This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipelin...This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise.展开更多
Based on use of multi-dimensional models,this investigation simulates the performance of a proton exchange membrane fuel cell by varying the channel pattern.In the one-dimensional model,the porosity of the gas diffusi...Based on use of multi-dimensional models,this investigation simulates the performance of a proton exchange membrane fuel cell by varying the channel pattern.In the one-dimensional model,the porosity of the gas diffusion layer is 0.3.The model reveals the water vapor distribution of the fuel cell and demonstrates that the amount of water vapor increases linearly with the reduction reaction adjacent to the gas channel and the gas diffusion layer.Secondly,four novel tapered gas channels are simulated by a two-dimensional model.The model considers the distributions of oxygen,the pressure drop,the amount of water vapor distribution and the polarization curves.The results indicate that as the channel depth decreases,the oxygen in the tapered gas channel can be accel-erated and forced into the gas diffusion layer to improve the cell performance.The three-dimensional model is employed to simulate the phenomenon associated with four novel tapered gas channels.The results also show that the best performance is realized in the least tapered gas channel.Finally,an experimentally determined mechanism is found to be consistent with the results of the simulation.展开更多
A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the loa...A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the load-leveling function for a real pipeline system. A storage tank filled with activated carbon together with a filter constitutes the major part of the load-leveling facility. Pressure and temperature of the system, as well as the real gas output of the storage tank were recorded. It is proven that load-leveling by adsorption is technically feasible even for low pipeline pressure of natural gas supply system.展开更多
文摘利用海洋-大气-海浪耦合模式COAWST进行了两组以东海区域为中心的72 h模拟试验。通过对比考虑动态海浪过程与未考虑该过程的试验结果,分析动态海浪过程对短期天气模拟的影响。结果表明,考虑动态海浪过程后将增强海表感热、潜热通量的模拟,造成海表大气增暖增湿。这一暖湿差异将促进大气垂向运动的发展,造成海平面低压发展,并进一步影响大气流场的变化,增强局地升温效果,有利于形成正反馈。该暖湿差异在南海西北部与菲律宾海域最为明显,且随高度上升逐渐减弱,至500 h Pa高度时差异基本消失。
基金国家自然科学基金3880571美国农业部USDA grant no.85-CRSR-2-2565的资助
文摘无论对于自然的还是人为管理的生态系统,天气都是最重要的一种环境条件。用系统分析方法对生态系统进行的研究使天气模拟越来越成为非常必要的了。本文首先介绍了一个美国天气模拟模型(WGEN)的数学原理。它用马尔柯夫链和Γ-分布组成降水量子模型,产生逐日降水量。用弱平稳过程和调和分析为工具建立另一个子模型,产生逐日最高温度、最低温度和太阳辐射量。通过常规的统计学方法或灰靶白化方法可以估计模型参数。于是,就可由WGEN生出Alabama州天气模型ALWGEN和北京天气模型BJWGEN。考虑到篇幅有限,本文没有具体介绍上述估计方法,也只是扼要介绍了用Monte Carlo Bootstrap方法进行模型校验和验证的问题。最后,简单地讨论了天气模拟模型的应用。如IPM研究中的风险分析,生态系统管理决策,农业生态区域规划等课题,对天气模型都有现实的或潜在的需要。
基金Supported by National Natural Science Foundation of China under Grant No.50379025.
文摘Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.
文摘In order to reduce waiting time in port for large LNG (liquefied natural gas) fueled ships, it is suggested that LNG STS (ship to ship) bunkering and cargo loading/unloading should be carried out simultaneously. This study investigated the safety zone of an LNG bunkering vessel with 10,000 cubic meters capacity transferring LNG fuel to an LNG fueled 18,000 TEU containership. Four LNG leakage scenarios were identified based on failure frequencies analysis of piping systems and severity of consequence, three-dimension CFD software FLACS was adopted to calculate flammable cloud dispersion after LNG leakage. As a result, we obtained a rectangle dangerous zone (41.3 m ~ 126 m), outside of this dangerous zone can be def'med as safety zone. It is concluded that safety zone of LNG STS bunkering and cargo loading/unloading SIMOPS (simultaneous operations) cannot keep the same, there are different results for different designs and operation locations. Due to high frequencies and severe consequences, two typical scenarios, the leakage of LNG hose and the natural gas releases from bunkering tank's safety relief valve during bunkering, cannot be ignored in similar study.
文摘This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise.
基金Supported by the National Science Council (NSC 97-222-E-009-067)
文摘Based on use of multi-dimensional models,this investigation simulates the performance of a proton exchange membrane fuel cell by varying the channel pattern.In the one-dimensional model,the porosity of the gas diffusion layer is 0.3.The model reveals the water vapor distribution of the fuel cell and demonstrates that the amount of water vapor increases linearly with the reduction reaction adjacent to the gas channel and the gas diffusion layer.Secondly,four novel tapered gas channels are simulated by a two-dimensional model.The model considers the distributions of oxygen,the pressure drop,the amount of water vapor distribution and the polarization curves.The results indicate that as the channel depth decreases,the oxygen in the tapered gas channel can be accel-erated and forced into the gas diffusion layer to improve the cell performance.The three-dimensional model is employed to simulate the phenomenon associated with four novel tapered gas channels.The results also show that the best performance is realized in the least tapered gas channel.Finally,an experimentally determined mechanism is found to be consistent with the results of the simulation.
基金Supported by the Science and Technology Commission of Tianjin and partly supported by the National Natural Science Foundation of China (No. 29936100).
文摘A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the load-leveling function for a real pipeline system. A storage tank filled with activated carbon together with a filter constitutes the major part of the load-leveling facility. Pressure and temperature of the system, as well as the real gas output of the storage tank were recorded. It is proven that load-leveling by adsorption is technically feasible even for low pipeline pressure of natural gas supply system.