The aim of this present study is to investigate the effect of Zanthoxylum bungeanum oil (essential oil from Z. bungeanum Maxim.) on cytotoxicity and the transdermal permeation of 5-fluorouracil and indomethacin. The...The aim of this present study is to investigate the effect of Zanthoxylum bungeanum oil (essential oil from Z. bungeanum Maxim.) on cytotoxicity and the transdermal permeation of 5-fluorouracil and indomethacin. The cy- totoxicity of Z. bungeanum oil on dermal fibroblasts and epidermal keratinocytes was studied using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The rat skin was employed to determine the percutaneous penetration enhancement effect of Z. bungeanum oil on hydrophilic and lipophilic model drugs, i.e., 5-fluorouracil and indomethacin. The secondary structure changes of the rat stratum comeum (SC) were determined using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and saturated solubilities and SC/vehicle partition coefficients of two model drugs with and without Z. bungeanum oil were also measured to un- derstand its related mechanisms of action. It was found that the half maximal inhibitory concentration (ICs0) values of Z. bungeanum oil were significantly lower in HaCaT and CCC-ESF-1 cell lines compared to the well-established and standard penetration enhancer Azone. The Z. bungeanum oil at various concentrations effectively facilitated the percutaneous penetration of two model drugs across the rat skin. In addition, the mechanisms of permeation en- hancement by Z. bungeanum oil could be explained with saturated solubility, SC/vehicle partition coefficient, and secondary structure changes of SC.展开更多
基金supported by the National Natural Science Foundation of China(No.81073059)the Beijing Natural Science Foundation(No.7132127)the Innovative Research Team in Beijing University of Chinese Medicine(No.2011-CXTD-13),China
文摘The aim of this present study is to investigate the effect of Zanthoxylum bungeanum oil (essential oil from Z. bungeanum Maxim.) on cytotoxicity and the transdermal permeation of 5-fluorouracil and indomethacin. The cy- totoxicity of Z. bungeanum oil on dermal fibroblasts and epidermal keratinocytes was studied using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The rat skin was employed to determine the percutaneous penetration enhancement effect of Z. bungeanum oil on hydrophilic and lipophilic model drugs, i.e., 5-fluorouracil and indomethacin. The secondary structure changes of the rat stratum comeum (SC) were determined using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and saturated solubilities and SC/vehicle partition coefficients of two model drugs with and without Z. bungeanum oil were also measured to un- derstand its related mechanisms of action. It was found that the half maximal inhibitory concentration (ICs0) values of Z. bungeanum oil were significantly lower in HaCaT and CCC-ESF-1 cell lines compared to the well-established and standard penetration enhancer Azone. The Z. bungeanum oil at various concentrations effectively facilitated the percutaneous penetration of two model drugs across the rat skin. In addition, the mechanisms of permeation en- hancement by Z. bungeanum oil could be explained with saturated solubility, SC/vehicle partition coefficient, and secondary structure changes of SC.