期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素 被引量:17
1
作者 贺行良 刘昌岭 +2 位作者 王江涛 张媛媛 孟庆国 《岩矿测试》 CAS CSCD 北大核心 2012年第1期154-158,共5页
天然气水合物气体同位素组成数据是其气体成因、运移与积聚过程研究的重要参数。目前天然气水合物气体单体碳、氢同位素仪器分析技术主要借鉴天然气的分析方法,但对水合物气的分解、收集、储存等前处理技术缺乏系统研究。本文利用气相色... 天然气水合物气体同位素组成数据是其气体成因、运移与积聚过程研究的重要参数。目前天然气水合物气体单体碳、氢同位素仪器分析技术主要借鉴天然气的分析方法,但对水合物气的分解、收集、储存等前处理技术缺乏系统研究。本文利用气相色谱-同位素比值质谱(GC-IRMS)技术,对比研究了顶空法、注射器法和排水法等水合物气体分解与收集方法的实用性,以及铝塑气袋和丁基橡胶塞密封的玻璃顶空瓶对分解气的储存效果。实验结果表明:在丁基橡胶塞密封的玻璃顶空瓶内真空分解且原位储存是水合物气体单体碳、氢同位素分析的最佳前处理方法。方法标准偏差为0.12‰~0.23‰[δ13C-(C1-C3,CO2)]、1.0‰~1.8‰[δD-(C1-C3)];相对标准偏差(RSD,n=6)为0.38%~0.86%[δ13C-(C1-C3,CO2)]、0.62%~1.00%[δD-(C1-C3)]。通过对南海神狐海域、祁连山冻土区、人工合成水合物样品的分析测定,表明该方法简便实用、适用范围宽,可满足天然气水合物气体单体碳、氢同位素的分析要求。 展开更多
关键词 天然气水合物气体 碳氢同位素 气相色谱-同位素比值质谱法
下载PDF
GC–IRMS测定白色块状天然气水合物气体中的碳氢同位素 被引量:2
2
作者 雷知生 曹珺 +2 位作者 刘坚 程思海 陈道华 《化学分析计量》 CAS 2015年第1期23-27,共5页
研究了GC–IRMS联用技术测定烃类气体碳氢稳定同位素的方法。利用气相色谱仪将烃类气体各组分分开,通过高温燃烧/裂解转化为CO2和H2,然后导入MAT–253稳定同位素质谱仪进行测试。用该方法测试的标准甲烷气体碳、氢同位素值和其标定值一... 研究了GC–IRMS联用技术测定烃类气体碳氢稳定同位素的方法。利用气相色谱仪将烃类气体各组分分开,通过高温燃烧/裂解转化为CO2和H2,然后导入MAT–253稳定同位素质谱仪进行测试。用该方法测试的标准甲烷气体碳、氢同位素值和其标定值一致,测定结果的相对标准偏差分别为0.222‰和0.950‰。用该法测定了广东沿海珠江口盆地东部海域首次钻获的高纯度天然气水合物样品所释放的烃类气体碳氢稳定同位素值,其中δ13C为–69.78‰(VPDB),δD为–184.4‰(VSMOW)。GC–IRMS法精确度高,可用范围广,适用于海洋天然气水合物样品所释放烃类气体碳氢同位素的测定。 展开更多
关键词 GC–IRMS法 高纯度天然气水合物气体 碳氢同位素
下载PDF
Sponge Effect on Coal Mine Methane Separation Based on Clathrate Hydrate Method 被引量:13
3
作者 ZHANG Baoyong CHENG Yuanping WU Qiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第4期610-614,共5页
The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carrie... The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment. 展开更多
关键词 coal mine methane separation clathrate hydrate SPONGE porous media mass transfer
下载PDF
Carbon Dioxide Capture Using Gas Hydrate Technology 被引量:3
4
作者 Beatrice Castellani Mirko Filipponi Andrea Nicolini Franco Cotana Federico Rossi 《Journal of Energy and Power Engineering》 2013年第5期883-890,共8页
According to IPCC (Intergovemmental Panel on Climate Change) Fourth Report, carbon dioxide emissions from the combustion of fossil fuels have been identified as the major contributor to global warming and climate ch... According to IPCC (Intergovemmental Panel on Climate Change) Fourth Report, carbon dioxide emissions from the combustion of fossil fuels have been identified as the major contributor to global warming and climate change. One of the new approaches for capturing carbon dioxide and subsequently lowering the emissions is based on gas hydrate crystallization. Gas hydrates have a large capacity for the storage of gases which also resemble an attractive method for gas filtration. The basis of the separation is the selective partition of the target component between the hydrate phase and the gaseous phase. It is expected that carbon dioxide is preferentially encaged into the hydrate crystal phase compared to the other components. In the present paper, after a comparison of gas hydrates with existing capture technologies, a novel apparatus for gas hydrate production is illustrated and results of a first set of experimental applications of the reactor for CO2 hydrate formation and separation are presented. In particular, the effects of two different promoters were investigated. Results show that the reactor allows a good level of temperature control, resulting in rapid hydrate formation and mild operating conditions. Results are a basis for setting up a procedure for CO2 separation and capture. 展开更多
关键词 Carbon dioxide capture gas hydrate gas separation promoters water spraying.
下载PDF
Gas hydrate formation in fine sand 被引量:10
5
作者 ZANG XiaoYa LIANG DeQing WU NengYou 《Science China Earth Sciences》 SCIE EI CAS 2013年第4期549-556,共8页
Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. Th... Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in a novel apparatus containing two different natural media from the South China Sea. The testing media consisted of silica sand particles with diameters of 150-250 μm and 250-380 μm. Hydrate was formed (as in nature) in salt water that occupies the interstitial space of the partially water-saturated silica sand bed. The experiments demonstrate that the rate of hydrate formation is a function of particle diameter, gas source, water salinity, and thermodynamic conditions. The initiation time of hydrate formation was very short and pressure decreased rapidly in the initial stage. The process of mixed gas hydrate formation can be divided into three stages for each type of sediment. Sand particle diameter and water salinity also can influence the formation process of hydrate. The conversion rate of water to hydrate was different under varying thermodynamic conditions, although the formation processes were similar. The conversion rate of methane hydrate in the 250-380 μm sediment was greater than that in the 150-250μm sediment. However, the sediment grain size has no significant influence on the conversion rate of mixed gas hydrate. 展开更多
关键词 formation kinetics water conversion rate natural porous media thermodynamic condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部