A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived f...A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived for 800 kW, were recently re-tuned, from a functional point of view and on the base of a parallel theoretical analysis, by decreasing to about 400 kW the former nominal power level. This provision, jointly with the basic design choice of adopting a long and amply dimensioned inlet-biomass thermal pretreatment section, turned out quite effective in achieving high gasification temperatures and a low-tar content in the produced gas at fuel-to-air ratios well below the usually imposed ones, to the advantage of the heat value of the product-gas. The paper discusses the numerical analysis results which helped to properly re-adjust the operational parameters of the gasifier and then presents the experimental performance data of the overall power plant including biomass consumption, gasification temperatures, gas production, composition and pollutants content, cold-gas conversion efficiency and global electric efficiency. Special care is devoted to investigating the issue of a significant production of carbon-containing particulate matter in the product gas, which turns out made up of char and fixed carbon much more than of tar species.展开更多
The self-preservation of methane hydrate is a key process in its engineering applications because the hydrate can survive for a significant period under atmospheric pressure and moderate temperature. Some experiments ...The self-preservation of methane hydrate is a key process in its engineering applications because the hydrate can survive for a significant period under atmospheric pressure and moderate temperature. Some experiments have predicted that the shielding ice formed on the hydrate surface after initial dissociation of the hydrate plays an important role in the self-preservation effect. We propose ice-shielding models of gas hydrates to investigate the dissociation rates quantitatively, including the self-preservation process, at temperatures below the ice-melting point and at atmospheric pressure. Three general models are constructed for two temperature ranges The rate-determining process for the lower temperature range is hydrate dissociation, and those for the higher range are gas diffusion through ice or hydrate layers, which depend on the thickness of the shielding-ice layer. Our models suggest that the extent of self-preservation depends on temperature, original hydrate size, and guest substances, which can explain the experimental results.展开更多
The present geothermal gradient and terrestrial heat flow was calculated of 18 wells in the Jianghan Basin.Thermal gradient distribution of the Jianghan Basin was obtained based on data of systematical steady-state te...The present geothermal gradient and terrestrial heat flow was calculated of 18 wells in the Jianghan Basin.Thermal gradient distribution of the Jianghan Basin was obtained based on data of systematical steady-state temperature and oil-test temperature.The basin-wide average thermal gradient in depth interval of 0-4000 m is 33.59℃/km.We report nine measured terrestrial heat flow values based on the data of detailed thermal conductivity and systematical steady-state temperature.These values vary from 41.9 to 60.9 mW/m 2 with a mean of 52.3±6.3 mW/m 2.However,thermal history analyses based on vitrinite reflectance(VR) and apatite fission track(AFT) data indicate that thermal gradient in the northern and southern Qianbei Fault reached its peak of ~36 and ~39℃/km respectively in the Middle Jurassic and the Oligocene,and it descended during the early Miocene to the present-time value.Furthermore,tectonic subsidence analysis reveals that the tectonic subsidence of the Jianghan Basin in the Cretaceous to early Miocene was characterized by synrift initial subsidence followed by the subsequent thermal subsidence.The thermal history and tectonic subsidence history of Jianghan Basin are of great significance to petroleum exploration and hydrocarbon source assessment,because they bear directly on issues of petroleum source rock maturation.Based on the thermal history and tectonic subsidence history,with the combination of geochemical and thermal parameters,the maturation and the hydrocarbon generation intensity evolution history of the P2d source rocks are modeled.The results show that the P2d source rocks are in a higher degree of maturation at present,and the Yuan'an and Herong sags are the two most important kitchens in the Late Jurassic,Xiaoban Sag is another most important kitchen during the Late Cretaceous to late Paleogene,and the Zhijiang and Mianyang sags are other two important hydrocarbon kitchens in the Late Cretaceous.The Mianyang Sag and Yichang Ramp are the favorable exploration targets in the future.This study may provide new insight for the understanding of the oil and gas exploration potential for the Jianghan Basin.展开更多
The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilib...The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.展开更多
文摘A new biomass-gasification power plant, of medium-size downdraft type, is presented and discussed in its design features and performance characteristics. Its configuration and overall dimensions, initially conceived for 800 kW, were recently re-tuned, from a functional point of view and on the base of a parallel theoretical analysis, by decreasing to about 400 kW the former nominal power level. This provision, jointly with the basic design choice of adopting a long and amply dimensioned inlet-biomass thermal pretreatment section, turned out quite effective in achieving high gasification temperatures and a low-tar content in the produced gas at fuel-to-air ratios well below the usually imposed ones, to the advantage of the heat value of the product-gas. The paper discusses the numerical analysis results which helped to properly re-adjust the operational parameters of the gasifier and then presents the experimental performance data of the overall power plant including biomass consumption, gasification temperatures, gas production, composition and pollutants content, cold-gas conversion efficiency and global electric efficiency. Special care is devoted to investigating the issue of a significant production of carbon-containing particulate matter in the product gas, which turns out made up of char and fixed carbon much more than of tar species.
文摘The self-preservation of methane hydrate is a key process in its engineering applications because the hydrate can survive for a significant period under atmospheric pressure and moderate temperature. Some experiments have predicted that the shielding ice formed on the hydrate surface after initial dissociation of the hydrate plays an important role in the self-preservation effect. We propose ice-shielding models of gas hydrates to investigate the dissociation rates quantitatively, including the self-preservation process, at temperatures below the ice-melting point and at atmospheric pressure. Three general models are constructed for two temperature ranges The rate-determining process for the lower temperature range is hydrate dissociation, and those for the higher range are gas diffusion through ice or hydrate layers, which depend on the thickness of the shielding-ice layer. Our models suggest that the extent of self-preservation depends on temperature, original hydrate size, and guest substances, which can explain the experimental results.
基金supported by National Natural Science Foundation of China(Grant No.41102152)Sinopec Marine Prospective Study Program(Grant No.2007CB411704)
文摘The present geothermal gradient and terrestrial heat flow was calculated of 18 wells in the Jianghan Basin.Thermal gradient distribution of the Jianghan Basin was obtained based on data of systematical steady-state temperature and oil-test temperature.The basin-wide average thermal gradient in depth interval of 0-4000 m is 33.59℃/km.We report nine measured terrestrial heat flow values based on the data of detailed thermal conductivity and systematical steady-state temperature.These values vary from 41.9 to 60.9 mW/m 2 with a mean of 52.3±6.3 mW/m 2.However,thermal history analyses based on vitrinite reflectance(VR) and apatite fission track(AFT) data indicate that thermal gradient in the northern and southern Qianbei Fault reached its peak of ~36 and ~39℃/km respectively in the Middle Jurassic and the Oligocene,and it descended during the early Miocene to the present-time value.Furthermore,tectonic subsidence analysis reveals that the tectonic subsidence of the Jianghan Basin in the Cretaceous to early Miocene was characterized by synrift initial subsidence followed by the subsequent thermal subsidence.The thermal history and tectonic subsidence history of Jianghan Basin are of great significance to petroleum exploration and hydrocarbon source assessment,because they bear directly on issues of petroleum source rock maturation.Based on the thermal history and tectonic subsidence history,with the combination of geochemical and thermal parameters,the maturation and the hydrocarbon generation intensity evolution history of the P2d source rocks are modeled.The results show that the P2d source rocks are in a higher degree of maturation at present,and the Yuan'an and Herong sags are the two most important kitchens in the Late Jurassic,Xiaoban Sag is another most important kitchen during the Late Cretaceous to late Paleogene,and the Zhijiang and Mianyang sags are other two important hydrocarbon kitchens in the Late Cretaceous.The Mianyang Sag and Yichang Ramp are the favorable exploration targets in the future.This study may provide new insight for the understanding of the oil and gas exploration potential for the Jianghan Basin.
基金supported by the National Natural Science Foundation of China(51106163)the National Basic Research Program of China (2009CB219504)the Joint Funds of NSFC with the Government of Guangdong Province(U0933004)
文摘The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.