This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitutio...This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.展开更多
The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the g...The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the gas consumption in the primary energy will increase from 0.3% to 10% or more by 2020.However,since the supply of natural gas cannot satisfy the requirements,China has begun to build liquefied natural gas(LNG)terminals in the coastal regions such as Guangdong and Fujian,and solve this problem by importing LNG from foreign countries.LNG needs to be transported by LNG ships from abroad.With the rapid growth of global gas production,the volume of LNG trade also increases,and the interregional production increased from 0.3% in 1970 to 26.2% in 2004.So,we need LNG ships more than before.This article puts forward the distribution of LNG ships and the speculation of the future of LNG transportation based on the studies on foreign LNG production,the LNG trade,the building of LNG ships,the LNG transportation,the chain model of LNG distribution,etc.展开更多
This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier ope...This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier operations in the maritime environment. The usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling as a standalone or hybrid algorithm are identified. This is evidenced with illustrative case studies.展开更多
By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace a...By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace acceh'rated. The Chinese section of Russia-China East Gas Pipeline was officially commenced, which marked that the northeast import path entered the stage ofconstruction. There are 13 LNG terminals in China. The National Development and Rerorm Commission (NDRC) approved China's.first private-owned LNG terminal- the Zhoushan LNG terminal. In the coming.five years, the focus of institutional reform will be the independence of pipelines and networks, the focus of construction will be regional networks and branch pipelines, and joint ventures will be the mainstream for gas pipeline construction and operation.展开更多
The first domestic ERWФ610 high-frequency straight-seam steel pipe production line was built in Shanghai Zhongyou TIPO Steel Pipe Co Ltd recently. This steel pipe production line initiated inside China has drawn the ...The first domestic ERWФ610 high-frequency straight-seam steel pipe production line was built in Shanghai Zhongyou TIPO Steel Pipe Co Ltd recently. This steel pipe production line initiated inside China has drawn the attention from many enterprises including PetroChina and CNOOC. It is known that the first batch of products have been transported to the construction site of the West-East Gas Transmission Project.展开更多
The procedure of reliability-based fatigue analysis of liquefied natural gas(LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave headi...The procedure of reliability-based fatigue analysis of liquefied natural gas(LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method(FEM) . Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis,Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory,fatigue damage is characterized by an S-N relationship,and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.展开更多
In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pi...In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.展开更多
The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temp...The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temperature range of 333 K was investigated. The gases include Ar (argon), N2 (nitrogen) and CO2 (carbon dioxide). The gas kinetic diameter with respect to permenace was found to occur in the order of At 〉 CO2 〉 N2, which was not in agreement with molecular sieving mechanism of transport after the first dip-coating of the support. However, gas flow rate was found to increase with gauge pressure in the order of Ar 〉 CO2 〉 N2, indicating Knudsen mechanism of transport. The porous ceramic support showed a higher flux indicating Knudsen transport. The surface image of the dip-coated porous ceramic membrane was characterised using SEM (scanning electron microscopy) to determine the surface morphology of the porous support at 333 K.展开更多
This paper presents an overview of the safety performance of the major existing pipeline transmission system in Canada, USA and Europe. The article deals the experience of Georgia in the development of pipeline transp...This paper presents an overview of the safety performance of the major existing pipeline transmission system in Canada, USA and Europe. The article deals the experience of Georgia in the development of pipeline transport. The information on the distribution of catastrophic failures and incidents per individual cause is given. The role of corrosion in these failures is considered. To ensure efficient and reliable operations of oil and gas pipelines, the new compositions of competitive cost effective protective pipe enamel coatings have been developed.展开更多
In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in t...In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas.展开更多
Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically in...Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically involved. Most previous studies on the unsaturated flow and its influence on slope stability were based on the singlephase water flow model (i.e., the Richards Equation) or the waterair two-phase flow model. The effects of gas transport and soil deformation on the movement of groundwater and the evolution of slope stability were less examined with a coupled solid-water-air model. In this paper, a numerical model was established based on the principles of the continuum mechanics and the averaging approach of the mixture theory and implemented in an FEM code for analysis of the coupled deformation, water flow and gas transport in porous media. The proposed model and the computer code were validated by the Liakopoulos drainage test over a sand column, and the significant effect of the lateral air boundary condition on the draining process of water was discussed. On this basis, the coupled processes of groundwater flow, gas transport and soil deformation in a homogeneous soil slope under a long heavy rainfall were simulated with the proposed three-phase model, and the numerical results revealed the remarkable delaying effects of gas transport and soil deformation on the propagation of the wetting front and the evolution of the slope stability. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.展开更多
The oxygen reduction reaction (ORR) in the cathode catalyst layer (CCL) of polymer electrolyte fuel cells (PEFC) is one of the major causes of performance loss during operation. In addition, the CCL is the most ...The oxygen reduction reaction (ORR) in the cathode catalyst layer (CCL) of polymer electrolyte fuel cells (PEFC) is one of the major causes of performance loss during operation. In addition, the CCL is the most expensive component due to the use of a Pt catalyst. Apart from the ORR itself, the species transport to and from the reactive sites determines the performance of the PEFC. The effective transport properties of the species in the CCL depend on its nanostructure. Therefore a three-dimensional reconstruction of the CCL is required. A series of two-dimensional images was obtained from focused ion beam- scanning electron microscope (FIB-SEM) imaging and a segmentation method for the two-dimensional images has been developed. The pore size distribution (PSD) was calculated for the three-dimensional geometry. The influence of the alignment and the anisotropic pixel size on the PSD has been investigated. Pores were found in the range between 5 nm and 205 nm. Evaluation of the Knudsen number showed that gas transport in the CCL is governed by the transition flow regime. The liquid water transport can be described within continuum hydrodynamics by including suitable slip flow boundary conditions.展开更多
基金Foundation item: Supported by the National Special Fund for Agro-scientific Research in the Public Interest (No.201003024), and the National Natural Science Foundation of China (No.51409042 No. 51209034).
文摘This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.
基金Under the auspices of the National Natural Science Foundation of China(No.40671052)
文摘The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the gas consumption in the primary energy will increase from 0.3% to 10% or more by 2020.However,since the supply of natural gas cannot satisfy the requirements,China has begun to build liquefied natural gas(LNG)terminals in the coastal regions such as Guangdong and Fujian,and solve this problem by importing LNG from foreign countries.LNG needs to be transported by LNG ships from abroad.With the rapid growth of global gas production,the volume of LNG trade also increases,and the interregional production increased from 0.3% in 1970 to 26.2% in 2004.So,we need LNG ships more than before.This article puts forward the distribution of LNG ships and the speculation of the future of LNG transportation based on the studies on foreign LNG production,the LNG trade,the building of LNG ships,the LNG transportation,the chain model of LNG distribution,etc.
文摘This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier operations in the maritime environment. The usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling as a standalone or hybrid algorithm are identified. This is evidenced with illustrative case studies.
文摘By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace acceh'rated. The Chinese section of Russia-China East Gas Pipeline was officially commenced, which marked that the northeast import path entered the stage ofconstruction. There are 13 LNG terminals in China. The National Development and Rerorm Commission (NDRC) approved China's.first private-owned LNG terminal- the Zhoushan LNG terminal. In the coming.five years, the focus of institutional reform will be the independence of pipelines and networks, the focus of construction will be regional networks and branch pipelines, and joint ventures will be the mainstream for gas pipeline construction and operation.
文摘The first domestic ERWФ610 high-frequency straight-seam steel pipe production line was built in Shanghai Zhongyou TIPO Steel Pipe Co Ltd recently. This steel pipe production line initiated inside China has drawn the attention from many enterprises including PetroChina and CNOOC. It is known that the first batch of products have been transported to the construction site of the West-East Gas Transmission Project.
文摘The procedure of reliability-based fatigue analysis of liquefied natural gas(LNG) carrier of membrane type under wave loads is presented. The stress responses of the hotspots in regular waves with different wave heading angles and wave lengths are evaluated by global ship finite element method(FEM) . Based on the probabilistic distribution function of hotspots' short-term stress-range using spectral-based analysis,Weibull distribution is adopted and discussed for fitting the long-term probabilistic distribution of stress-range. Based on linear cumulative damage theory,fatigue damage is characterized by an S-N relationship,and limit state function is established. Structural fatigue damage behavior of several typical hotspots of LNG middle ship section is clarified and reliability analysis is performed. It is believed that the presented results and conclusions can be of use in calibration for practical design and initial fatigue safety evaluation for membrane type LNG carrier.
文摘In the process of the constant development of the oil and gas storage and transportation technology, the maintenance of the large pipelines is an important task. At present, China vigorously promotes the use of the pipeline robots, for the maintenance of the oil and gas pipelines by the unique characteristics of the robots. In this paper, the author carries out the detailed analysis on the current situation of the development of the pipeline robots in the oil and gas storage and transportation industry, and compares the different applications of the pipeline robots at home and abroad. Starting from the principles of the operation of the robots, the author analyzes the characteristics of the different types of the robots, and combined with the existing conditions of the oil and gas storage and transportation in our country, the author tries to find the most favorable way of the working of the pipeline robots, to continuously improve the development of the oil and gas storage and transportation industry using the robot technologies.
文摘The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temperature range of 333 K was investigated. The gases include Ar (argon), N2 (nitrogen) and CO2 (carbon dioxide). The gas kinetic diameter with respect to permenace was found to occur in the order of At 〉 CO2 〉 N2, which was not in agreement with molecular sieving mechanism of transport after the first dip-coating of the support. However, gas flow rate was found to increase with gauge pressure in the order of Ar 〉 CO2 〉 N2, indicating Knudsen mechanism of transport. The porous ceramic support showed a higher flux indicating Knudsen transport. The surface image of the dip-coated porous ceramic membrane was characterised using SEM (scanning electron microscopy) to determine the surface morphology of the porous support at 333 K.
文摘This paper presents an overview of the safety performance of the major existing pipeline transmission system in Canada, USA and Europe. The article deals the experience of Georgia in the development of pipeline transport. The information on the distribution of catastrophic failures and incidents per individual cause is given. The role of corrosion in these failures is considered. To ensure efficient and reliable operations of oil and gas pipelines, the new compositions of competitive cost effective protective pipe enamel coatings have been developed.
文摘In recent years, our country is increasingly dependent on the use of the oil resources, and the degree of the oil mining is also continuously upgrading. After the completion of the tasks related to the oil mining in the lands, the technologies for the development of the offshore oil mining are particularly important. Among these problems, after the exploitation, the storage and transportation of the offshore oil and gas is worthy of the discussion of the technical personnel. From the experience of the oil and gas storage and transportation in the long years, in some environmentally degraded areas, there are problems in the efficiency and safety in the long pipeline transportation and the oil and gas mixed transportation, and in the transportation, there are also big shortcomings. In this paper, the author carries on the analysis of the existing questions encountering in our country's oil and gas storage and transportation~ and proposes the direction of the researches in the future oil and gas storage and transportation, and the purpose is to better improve the security of Cbina's oil and gas storage and transportation and to enhance the efficiency of the use of the oil and gas.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50839004, 51079107) the Program for New Centu-ry Excellent Talents in University (Grant No. NCET-09-0610)
文摘Rain infiltration into a soil slope leads to propagation of the wetting front, transport of air in pores and deformation of the soils, in which coupled processes among the solid, liquid and gas phases are typically involved. Most previous studies on the unsaturated flow and its influence on slope stability were based on the singlephase water flow model (i.e., the Richards Equation) or the waterair two-phase flow model. The effects of gas transport and soil deformation on the movement of groundwater and the evolution of slope stability were less examined with a coupled solid-water-air model. In this paper, a numerical model was established based on the principles of the continuum mechanics and the averaging approach of the mixture theory and implemented in an FEM code for analysis of the coupled deformation, water flow and gas transport in porous media. The proposed model and the computer code were validated by the Liakopoulos drainage test over a sand column, and the significant effect of the lateral air boundary condition on the draining process of water was discussed. On this basis, the coupled processes of groundwater flow, gas transport and soil deformation in a homogeneous soil slope under a long heavy rainfall were simulated with the proposed three-phase model, and the numerical results revealed the remarkable delaying effects of gas transport and soil deformation on the propagation of the wetting front and the evolution of the slope stability. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.
文摘The oxygen reduction reaction (ORR) in the cathode catalyst layer (CCL) of polymer electrolyte fuel cells (PEFC) is one of the major causes of performance loss during operation. In addition, the CCL is the most expensive component due to the use of a Pt catalyst. Apart from the ORR itself, the species transport to and from the reactive sites determines the performance of the PEFC. The effective transport properties of the species in the CCL depend on its nanostructure. Therefore a three-dimensional reconstruction of the CCL is required. A series of two-dimensional images was obtained from focused ion beam- scanning electron microscope (FIB-SEM) imaging and a segmentation method for the two-dimensional images has been developed. The pore size distribution (PSD) was calculated for the three-dimensional geometry. The influence of the alignment and the anisotropic pixel size on the PSD has been investigated. Pores were found in the range between 5 nm and 205 nm. Evaluation of the Knudsen number showed that gas transport in the CCL is governed by the transition flow regime. The liquid water transport can be described within continuum hydrodynamics by including suitable slip flow boundary conditions.