Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice i...Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the g...The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the gas consumption in the primary energy will increase from 0.3% to 10% or more by 2020.However,since the supply of natural gas cannot satisfy the requirements,China has begun to build liquefied natural gas(LNG)terminals in the coastal regions such as Guangdong and Fujian,and solve this problem by importing LNG from foreign countries.LNG needs to be transported by LNG ships from abroad.With the rapid growth of global gas production,the volume of LNG trade also increases,and the interregional production increased from 0.3% in 1970 to 26.2% in 2004.So,we need LNG ships more than before.This article puts forward the distribution of LNG ships and the speculation of the future of LNG transportation based on the studies on foreign LNG production,the LNG trade,the building of LNG ships,the LNG transportation,the chain model of LNG distribution,etc.展开更多
Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!fil...Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!filling commercial development after U.S. attd Canada. Natural gas import growth and growth rate declined obviously, and the imported pipeline gas and LNG totaled 61.2 billion cubic meters in 2015. Apparent natural gas consumption was 186.5 billion cubic meters in 2015, rising by 4.4% as compared with the same period last year, but it hit a historic low. There is higher dozonward pressure on domestic macro economy in 2016. However, natural gas demand will see more rapid growth, propelled by such favorable factors as gas price regulation and environmental protection policies. It is prospected that natural gas market will take a turn for the better than in 2015, and natural gas supply will still be rich in general in 2016.展开更多
A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the propose...A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.展开更多
This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitutio...This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.展开更多
Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received cons...Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received considerable attention and has been investigated extensively. However, the detailed flow structure in the shell needs to be determined for reliable and effective design. Therefore, the objective of this study was to clarify the flow structure in shell by particle image velocimetry (PIV). Experiments were conducted using two types of model; 15% baffle cut having inlet and outlet positions !n the direction of 90° to the cut and 30% baffle cut having inlet and outlet positions in the direction of 180° to the cut. Each test section is 169 mm in inner diameter and 344.6 mm in length. The flow features were characterized in different baffle cuts with regards to the velocity vector field and velocity distribution. The results show that the flow characteristics of 15% baffle cut type vaporizer are comparable to those of 30% baffle cut type vaporizer.展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
This study presents three kinds of skid-mounted plants, including single mixed refrigerant cycle (MRC), nitrogen expander cycle, and natural gas (NG) Claude cycle. Hysys simulation shows that single MRC is the mos...This study presents three kinds of skid-mounted plants, including single mixed refrigerant cycle (MRC), nitrogen expander cycle, and natural gas (NG) Claude cycle. Hysys simulation shows that single MRC is the most efficient cycle among the three. The specific power of single MRC liquefiers is 1 485 k.l/kg, 15% higher than that of large liquefaction process. Considering the recovery of stranded-gas, commercial analysis suggests that the initial cost of LNG plants ranging from 1 to 100 ms/day can be paid back in 2 to 4 years.展开更多
This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier ope...This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier operations in the maritime environment. The usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling as a standalone or hybrid algorithm are identified. This is evidenced with illustrative case studies.展开更多
In order to reduce waiting time in port for large LNG (liquefied natural gas) fueled ships, it is suggested that LNG STS (ship to ship) bunkering and cargo loading/unloading should be carried out simultaneously. T...In order to reduce waiting time in port for large LNG (liquefied natural gas) fueled ships, it is suggested that LNG STS (ship to ship) bunkering and cargo loading/unloading should be carried out simultaneously. This study investigated the safety zone of an LNG bunkering vessel with 10,000 cubic meters capacity transferring LNG fuel to an LNG fueled 18,000 TEU containership. Four LNG leakage scenarios were identified based on failure frequencies analysis of piping systems and severity of consequence, three-dimension CFD software FLACS was adopted to calculate flammable cloud dispersion after LNG leakage. As a result, we obtained a rectangle dangerous zone (41.3 m ~ 126 m), outside of this dangerous zone can be def'med as safety zone. It is concluded that safety zone of LNG STS bunkering and cargo loading/unloading SIMOPS (simultaneous operations) cannot keep the same, there are different results for different designs and operation locations. Due to high frequencies and severe consequences, two typical scenarios, the leakage of LNG hose and the natural gas releases from bunkering tank's safety relief valve during bunkering, cannot be ignored in similar study.展开更多
By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace a...By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace acceh'rated. The Chinese section of Russia-China East Gas Pipeline was officially commenced, which marked that the northeast import path entered the stage ofconstruction. There are 13 LNG terminals in China. The National Development and Rerorm Commission (NDRC) approved China's.first private-owned LNG terminal- the Zhoushan LNG terminal. In the coming.five years, the focus of institutional reform will be the independence of pipelines and networks, the focus of construction will be regional networks and branch pipelines, and joint ventures will be the mainstream for gas pipeline construction and operation.展开更多
Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mec...Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.展开更多
PetroChina has got the preliminary approval from the central government for construction of three LNG terminals in the coastal areas of Jiangsu Province, Hebei Province and Liaoning Province. Reportedly, China's Nati...PetroChina has got the preliminary approval from the central government for construction of three LNG terminals in the coastal areas of Jiangsu Province, Hebei Province and Liaoning Province. Reportedly, China's National Development and Reform Commission (NDRC) has given green light to PetroChina to conduct preliminary work in constructing the three terminals”, a PetroChina senior vice-president recently said at an energy forum in Beijing.展开更多
This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction proces...This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction process, the cold energy contained in LNG will be utilized. In order to ensure the optimum operating conditions of the temlinal and C2 + hydrocarbon extraction facility by optimizing the current operating processes of the terminal, the C2 + hydrocarbon extraction facility construction plan is proposed. We conducted numerous calculations and simulations using such specific analysis software as PRO II 〈 version 7.0 〉. Additionally available flow data are used to verify the cyclic send-out rates from the terminal, thus establishing the current and future projected load factors. This study is intended to make sure that GDLNG can continue to supply gas via the pipeline system safely without interruptions and most significantly solves the effects of flow fluctuations at the terminal gasification send-out facility on the hydrocarbons extraction, ensuring optimum pipeline operations and ensuring safe and effective means for such C2+ hydrocarbons extraction process as well. At the same time, the terminal is also in the optimum operation condition. This is very significant to the terminal safety operation and the energy conservation and emission reduction.展开更多
Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is conside...Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is considered to a promising technique to prevent and eliminate stratification in LNG storage tanks. This study is concerned with the numerical simulation of a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The jet behavior was investigated with the laboratory-based experiment of the authors' previous study. A numerical method proposed by the authors is employed for the simulation. The upper and lower fluids are water and a NaCl-water solution, respectively, and the lower fluid is issued vertically upward from a nozzle on the bottom of the tank. The Reynolds number (Re) defined by the jet velocity and the nozzle diameter ranges from 95 to 2,378, and the mass concentration of the NaCl-water solution Co is set at 0.02 and 0.04. The simulation highlights the jet-induced mixing between the upper and lower fluids. It also clarifies the effects of Re and C0 on the height and horizontal spread of the jet.展开更多
The current basic energy plan of Japan was authorized in the Cabinet in June 2010, in which ambitious energy and environmental targets and policies giving nuclear power a pivotal role toward 2030 were described. At pr...The current basic energy plan of Japan was authorized in the Cabinet in June 2010, in which ambitious energy and environmental targets and policies giving nuclear power a pivotal role toward 2030 were described. At present, the Japanese government has been forced to review the basic energy plan in the wake of the great east Japan earthquake occurred on March 11, 2011 followed by the severe accident at the nuclear power plants in Fukushima. Before the disaster, the IAE (institute of applied energy) had realized that it was not clear how CO2-free hydrogen would contribute to solving various energy and environmental issues, or that prospects were not clear for large demand of CQ-free hydrogen other than FCVs (fuel cell vehicles). In this connection, the authors organized a voluntary "Concept Study Group (in short)" in March 2011 and held four meetings until the end of March 2012. Through the quantitative studies using IAE's simulation model (GRAPE), the common recognition was built in the concept study group that hydrogen could contribute to energy security and increase in zero-emissions electric power ratio in Japan. It was also estimated that global CO2-free hydrogen supply chains could be realized by degrees after 2020. Based on these results, the authors made a proposal that hydrogen should be added in the primary energy constitution for new basic energy plan to the Japanese government because imported hydrogen could be considered as a pseudo-primary energy like LNG (liquefied natural gas). Now, the succeeding "Action Plan Study Group (in short)" has been held focusing on hydrogen demand in various applications, future pictures of CO2-free hydrogen chains and road maps. Activity results of the "Concept Study Group" are shown here.展开更多
文摘Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
基金Under the auspices of the National Natural Science Foundation of China(No.40671052)
文摘The production and consumption of natural gas in China has been developing rapidly in recent years.It is expected that the annual growth rate of the demand for natural gas will reach 12% in the next 15 years,and the gas consumption in the primary energy will increase from 0.3% to 10% or more by 2020.However,since the supply of natural gas cannot satisfy the requirements,China has begun to build liquefied natural gas(LNG)terminals in the coastal regions such as Guangdong and Fujian,and solve this problem by importing LNG from foreign countries.LNG needs to be transported by LNG ships from abroad.With the rapid growth of global gas production,the volume of LNG trade also increases,and the interregional production increased from 0.3% in 1970 to 26.2% in 2004.So,we need LNG ships more than before.This article puts forward the distribution of LNG ships and the speculation of the future of LNG transportation based on the studies on foreign LNG production,the LNG trade,the building of LNG ships,the LNG transportation,the chain model of LNG distribution,etc.
文摘Natural gas output remained stable growth and reached 130.9 billion cubic meters in 2015, 3% higher than the same period last year. Shale gas saw huge progress. China titus became the third country in the world fu!filling commercial development after U.S. attd Canada. Natural gas import growth and growth rate declined obviously, and the imported pipeline gas and LNG totaled 61.2 billion cubic meters in 2015. Apparent natural gas consumption was 186.5 billion cubic meters in 2015, rising by 4.4% as compared with the same period last year, but it hit a historic low. There is higher dozonward pressure on domestic macro economy in 2016. However, natural gas demand will see more rapid growth, propelled by such favorable factors as gas price regulation and environmental protection policies. It is prospected that natural gas market will take a turn for the better than in 2015, and natural gas supply will still be rich in general in 2016.
基金Supported by the National Natural Science Foundation of China(20876056,20536020)the PhD Program Fund from Ministry of Education of China(20100172110016)
文摘A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.
基金Foundation item: Supported by the National Special Fund for Agro-scientific Research in the Public Interest (No.201003024), and the National Natural Science Foundation of China (No.51409042 No. 51209034).
文摘This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2010-013-D00007)2010 Research Professor Fund of Gyeongsang National University,Korea
文摘Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received considerable attention and has been investigated extensively. However, the detailed flow structure in the shell needs to be determined for reliable and effective design. Therefore, the objective of this study was to clarify the flow structure in shell by particle image velocimetry (PIV). Experiments were conducted using two types of model; 15% baffle cut having inlet and outlet positions !n the direction of 90° to the cut and 30% baffle cut having inlet and outlet positions in the direction of 180° to the cut. Each test section is 169 mm in inner diameter and 344.6 mm in length. The flow features were characterized in different baffle cuts with regards to the velocity vector field and velocity distribution. The results show that the flow characteristics of 15% baffle cut type vaporizer are comparable to those of 30% baffle cut type vaporizer.
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.
文摘This study presents three kinds of skid-mounted plants, including single mixed refrigerant cycle (MRC), nitrogen expander cycle, and natural gas (NG) Claude cycle. Hysys simulation shows that single MRC is the most efficient cycle among the three. The specific power of single MRC liquefiers is 1 485 k.l/kg, 15% higher than that of large liquefaction process. Considering the recovery of stranded-gas, commercial analysis suggests that the initial cost of LNG plants ranging from 1 to 100 ms/day can be paid back in 2 to 4 years.
文摘This study discusses the analysis of various modeling approaches such as genetic algorithms, fuzzy logic and evidential reasoning, and maintenance techniques applicable to the liquefied natural gas (LNG) carrier operations in the maritime environment. The usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling as a standalone or hybrid algorithm are identified. This is evidenced with illustrative case studies.
文摘In order to reduce waiting time in port for large LNG (liquefied natural gas) fueled ships, it is suggested that LNG STS (ship to ship) bunkering and cargo loading/unloading should be carried out simultaneously. This study investigated the safety zone of an LNG bunkering vessel with 10,000 cubic meters capacity transferring LNG fuel to an LNG fueled 18,000 TEU containership. Four LNG leakage scenarios were identified based on failure frequencies analysis of piping systems and severity of consequence, three-dimension CFD software FLACS was adopted to calculate flammable cloud dispersion after LNG leakage. As a result, we obtained a rectangle dangerous zone (41.3 m ~ 126 m), outside of this dangerous zone can be def'med as safety zone. It is concluded that safety zone of LNG STS bunkering and cargo loading/unloading SIMOPS (simultaneous operations) cannot keep the same, there are different results for different designs and operation locations. Due to high frequencies and severe consequences, two typical scenarios, the leakage of LNG hose and the natural gas releases from bunkering tank's safety relief valve during bunkering, cannot be ignored in similar study.
文摘By the end of 2015, total length of China's long-distance gas pipelines has exceeded 70,O00km. Onshore stratey, ic import paths have been formed, domestic trunk networks perfected and gas storages construction pace acceh'rated. The Chinese section of Russia-China East Gas Pipeline was officially commenced, which marked that the northeast import path entered the stage ofconstruction. There are 13 LNG terminals in China. The National Development and Rerorm Commission (NDRC) approved China's.first private-owned LNG terminal- the Zhoushan LNG terminal. In the coming.five years, the focus of institutional reform will be the independence of pipelines and networks, the focus of construction will be regional networks and branch pipelines, and joint ventures will be the mainstream for gas pipeline construction and operation.
文摘Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.
文摘PetroChina has got the preliminary approval from the central government for construction of three LNG terminals in the coastal areas of Jiangsu Province, Hebei Province and Liaoning Province. Reportedly, China's National Development and Reform Commission (NDRC) has given green light to PetroChina to conduct preliminary work in constructing the three terminals”, a PetroChina senior vice-president recently said at an energy forum in Beijing.
文摘This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction process, the cold energy contained in LNG will be utilized. In order to ensure the optimum operating conditions of the temlinal and C2 + hydrocarbon extraction facility by optimizing the current operating processes of the terminal, the C2 + hydrocarbon extraction facility construction plan is proposed. We conducted numerous calculations and simulations using such specific analysis software as PRO II 〈 version 7.0 〉. Additionally available flow data are used to verify the cyclic send-out rates from the terminal, thus establishing the current and future projected load factors. This study is intended to make sure that GDLNG can continue to supply gas via the pipeline system safely without interruptions and most significantly solves the effects of flow fluctuations at the terminal gasification send-out facility on the hydrocarbons extraction, ensuring optimum pipeline operations and ensuring safe and effective means for such C2+ hydrocarbons extraction process as well. At the same time, the terminal is also in the optimum operation condition. This is very significant to the terminal safety operation and the energy conservation and emission reduction.
文摘Density stratification of LNG (liquefied natural gas) is produced in a storage tank when one LNG is loaded on top of another LNG in the same tank. Mixing LNG by a jet issued from a nozzle on the tank wall is considered to a promising technique to prevent and eliminate stratification in LNG storage tanks. This study is concerned with the numerical simulation of a jet flow issued into a two-layer density-stratified fluid in a tank and the resultant mixing phenomena. The jet behavior was investigated with the laboratory-based experiment of the authors' previous study. A numerical method proposed by the authors is employed for the simulation. The upper and lower fluids are water and a NaCl-water solution, respectively, and the lower fluid is issued vertically upward from a nozzle on the bottom of the tank. The Reynolds number (Re) defined by the jet velocity and the nozzle diameter ranges from 95 to 2,378, and the mass concentration of the NaCl-water solution Co is set at 0.02 and 0.04. The simulation highlights the jet-induced mixing between the upper and lower fluids. It also clarifies the effects of Re and C0 on the height and horizontal spread of the jet.
文摘The current basic energy plan of Japan was authorized in the Cabinet in June 2010, in which ambitious energy and environmental targets and policies giving nuclear power a pivotal role toward 2030 were described. At present, the Japanese government has been forced to review the basic energy plan in the wake of the great east Japan earthquake occurred on March 11, 2011 followed by the severe accident at the nuclear power plants in Fukushima. Before the disaster, the IAE (institute of applied energy) had realized that it was not clear how CO2-free hydrogen would contribute to solving various energy and environmental issues, or that prospects were not clear for large demand of CQ-free hydrogen other than FCVs (fuel cell vehicles). In this connection, the authors organized a voluntary "Concept Study Group (in short)" in March 2011 and held four meetings until the end of March 2012. Through the quantitative studies using IAE's simulation model (GRAPE), the common recognition was built in the concept study group that hydrogen could contribute to energy security and increase in zero-emissions electric power ratio in Japan. It was also estimated that global CO2-free hydrogen supply chains could be realized by degrees after 2020. Based on these results, the authors made a proposal that hydrogen should be added in the primary energy constitution for new basic energy plan to the Japanese government because imported hydrogen could be considered as a pseudo-primary energy like LNG (liquefied natural gas). Now, the succeeding "Action Plan Study Group (in short)" has been held focusing on hydrogen demand in various applications, future pictures of CO2-free hydrogen chains and road maps. Activity results of the "Concept Study Group" are shown here.