High-performance computational models are required to make the real-time or faster than rea^-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objectiv...High-performance computational models are required to make the real-time or faster than rea^-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary so- lar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolu- tion of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind measurements t^om spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and the transition of the solar wind speeds and magnetic field polarities.展开更多
The optimal control problem of the multibody dynamics of a spacecraft in space, modeled as a central body with one-sided connected deployable solar arrays, is investigated. The dynamical equations of motion of the spa...The optimal control problem of the multibody dynamics of a spacecraft in space, modeled as a central body with one-sided connected deployable solar arrays, is investigated. The dynamical equations of motion of the spacecraft with solar arrays are derived using the multibody dynamics method. The control of the attitude motion of a spacecraft system can be transformed into the motion planning problem of nonholonomic system when the initial angular momentum is zero. These are then used to investigate the motion planning of the spacecraft during solar arrays deployment via particle swarm optimization (PSO) and results are obtained with the optimal control input and the optimal trajectory. The results of numerical simulation show that this approach is effective for the control problem of the attitude of a spacecraft during the deployment process of its solar arrays.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41031066,41231068,41274192,41074121&41074122)the National Basic Research Program of China(Grant No.2012CB825601)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-01-4)the Specialized Research Fund for State Key Laboratories
文摘High-performance computational models are required to make the real-time or faster than rea^-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary so- lar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolu- tion of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind measurements t^om spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and the transition of the solar wind speeds and magnetic field polarities.
基金supported by the National Natural Science Foundation of China (Grant No. 11072038)
文摘The optimal control problem of the multibody dynamics of a spacecraft in space, modeled as a central body with one-sided connected deployable solar arrays, is investigated. The dynamical equations of motion of the spacecraft with solar arrays are derived using the multibody dynamics method. The control of the attitude motion of a spacecraft system can be transformed into the motion planning problem of nonholonomic system when the initial angular momentum is zero. These are then used to investigate the motion planning of the spacecraft during solar arrays deployment via particle swarm optimization (PSO) and results are obtained with the optimal control input and the optimal trajectory. The results of numerical simulation show that this approach is effective for the control problem of the attitude of a spacecraft during the deployment process of its solar arrays.