A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the loa...A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the load-leveling function for a real pipeline system. A storage tank filled with activated carbon together with a filter constitutes the major part of the load-leveling facility. Pressure and temperature of the system, as well as the real gas output of the storage tank were recorded. It is proven that load-leveling by adsorption is technically feasible even for low pipeline pressure of natural gas supply system.展开更多
In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for...In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.展开更多
基金Supported by the Science and Technology Commission of Tianjin and partly supported by the National Natural Science Foundation of China (No. 29936100).
文摘A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the load-leveling function for a real pipeline system. A storage tank filled with activated carbon together with a filter constitutes the major part of the load-leveling facility. Pressure and temperature of the system, as well as the real gas output of the storage tank were recorded. It is proven that load-leveling by adsorption is technically feasible even for low pipeline pressure of natural gas supply system.
基金supported in part by the State Major Science and Technology Special Projects under Grant No. 2012ZX03004001the National Basic Research Program (973) of China under Grants No. 2012CB315801, No. 2011CB302901the Chinese Universities Scientific Fund under Grant No. 2012RC0306
文摘In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.