2, 9, 16, 23-tetracarboxy zinc phthalocyanine (ZnTCPc) is synthesized and characterized by physicochemical and theoretical methods and it is used as a photosensitizer in dye-sensitized solar cells (DSSC). The exci...2, 9, 16, 23-tetracarboxy zinc phthalocyanine (ZnTCPc) is synthesized and characterized by physicochemical and theoretical methods and it is used as a photosensitizer in dye-sensitized solar cells (DSSC). The excited lifetime, band gap and frontier orbital distribution of ZnTCPc are investigated by fluorescence spectra, cyclic voltammetry and quantum calculation. The results show that the excited lifetime and band gap are 0. 1 ns and 1.81 eV, respectively. Moreover, it is found that the highest occupied molecular orbital (HOMO) location is not shared by both the zinc metal and the isoindoline ligands, and the lowest unoccupied molecular orbital(LUMO) location does not strengthen the interaction coupling between ZnTCPc and TiO:. As a result, the ZnTCPc-DSSC gains a short-circuit current density of 0. 147 mA/cm2, an open-circuit photovoltage of 277 mV, a fill factor of 0. 51 and an overall conversion efficiency of 0. 021%.展开更多
Bulk-heterojunction(BHJ)organic solar cells(OSCs)showcase great advantages in device fabrication via low-cost and convenient solution-processing techniques for diverse applications(e.g.,flexible and semitransparent de...Bulk-heterojunction(BHJ)organic solar cells(OSCs)showcase great advantages in device fabrication via low-cost and convenient solution-processing techniques for diverse applications(e.g.,flexible and semitransparent devices)[1,2].展开更多
A series of new polymer donors (PT-PP, PT-2fPP and PT-4fPP) were synthesized based on alkylthiophene substituted benzodithiophene (BDT-T) and pyrido[3,4-b]pyrazine (PP) building blocks and the effects of fluorination ...A series of new polymer donors (PT-PP, PT-2fPP and PT-4fPP) were synthesized based on alkylthiophene substituted benzodithiophene (BDT-T) and pyrido[3,4-b]pyrazine (PP) building blocks and the effects of fluorination on the polymer properties were explored. Photophysical properties, charge mobilities and morphologies of the three polymers have been intensively investigated. The results indicated that the introduction of the fluorine atom at meta-positions of phenyl substituted PP unit hardly affected their highest occupied molecular orbital (HOMO) level. More importantly, controlling the degree of side-chain fluorination in the polymers is crucial for optimizing the blend morphology. Three polymers showed different photovoltaic properties. The polymer solar cell (PSC) based on the single layer device structure of ITO/PEDOT:PSS/PT-4fPP:PC71BM (1:1, w:w)/ZrAcac/Al demonstrates a high power conversion efficiency (PCE) of 7.61% under the illumination of AM 1.5G,100 mW cm-2, which is the highest value for PP-based PSCs.展开更多
基金The National Natural Science Foundation of China(No.21173042)the National Basic Research Program of China(973 Program)(No.2007CB936300)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK201123694)Foundation of Jiangsu Key Laboratory of Environmental Material and Environmental Engineering(No.JHCG201012)Foundation of Key Laboratory of Novel Thin Film Solar Cells of Chinese Academy of Sciences(No.KF200902)Science and Technology Founda-tion of Southeast University(No.KJ2010429)
文摘2, 9, 16, 23-tetracarboxy zinc phthalocyanine (ZnTCPc) is synthesized and characterized by physicochemical and theoretical methods and it is used as a photosensitizer in dye-sensitized solar cells (DSSC). The excited lifetime, band gap and frontier orbital distribution of ZnTCPc are investigated by fluorescence spectra, cyclic voltammetry and quantum calculation. The results show that the excited lifetime and band gap are 0. 1 ns and 1.81 eV, respectively. Moreover, it is found that the highest occupied molecular orbital (HOMO) location is not shared by both the zinc metal and the isoindoline ligands, and the lowest unoccupied molecular orbital(LUMO) location does not strengthen the interaction coupling between ZnTCPc and TiO:. As a result, the ZnTCPc-DSSC gains a short-circuit current density of 0. 147 mA/cm2, an open-circuit photovoltage of 277 mV, a fill factor of 0. 51 and an overall conversion efficiency of 0. 021%.
基金the National Natural Science Foundation of China (21905137, 21875111, 51573077 and 51861145401)the Natural Science Foundation of Jiangsu Province (BK20180496)the Fundamental Research Funds for the Central Universities (30918011346)。
文摘Bulk-heterojunction(BHJ)organic solar cells(OSCs)showcase great advantages in device fabrication via low-cost and convenient solution-processing techniques for diverse applications(e.g.,flexible and semitransparent devices)[1,2].
基金supported by the National Natural Science Foundation of China (51673205, 21506258)National Key Research & Development Projects of China (2017YFA0206600)+3 种基金Hunan Provincial Natural Science Foundation for Distinguished Young Scholars (2017JJ1029)Natural Science Foundation of Hunan Province (2016JJ3134)Project of Innovation-driven Plan in Central South University, China (2016CX035)the Fundamental Research Funds for the Central Universities of Central South University (2016zzts023)
文摘A series of new polymer donors (PT-PP, PT-2fPP and PT-4fPP) were synthesized based on alkylthiophene substituted benzodithiophene (BDT-T) and pyrido[3,4-b]pyrazine (PP) building blocks and the effects of fluorination on the polymer properties were explored. Photophysical properties, charge mobilities and morphologies of the three polymers have been intensively investigated. The results indicated that the introduction of the fluorine atom at meta-positions of phenyl substituted PP unit hardly affected their highest occupied molecular orbital (HOMO) level. More importantly, controlling the degree of side-chain fluorination in the polymers is crucial for optimizing the blend morphology. Three polymers showed different photovoltaic properties. The polymer solar cell (PSC) based on the single layer device structure of ITO/PEDOT:PSS/PT-4fPP:PC71BM (1:1, w:w)/ZrAcac/Al demonstrates a high power conversion efficiency (PCE) of 7.61% under the illumination of AM 1.5G,100 mW cm-2, which is the highest value for PP-based PSCs.