We have developed a 202-year tree-ring width chronology of Shensi fir(Abies chensiensis) growing in an open canopy forest at the treeline of the eastern Qinling Mountains. Climate response analyses revealed that the r...We have developed a 202-year tree-ring width chronology of Shensi fir(Abies chensiensis) growing in an open canopy forest at the treeline of the eastern Qinling Mountains. Climate response analyses revealed that the ring width of Shensi fir trees is primarily controlled by the range of temperature from February–June. The regression model that we used for statistical temperature reconstruction passed the leave-one-out cross-validation used in dendroclimatology, resulting in a quality-controlled February–June reconstruction for the eastern Qinling Mountains. The model accounts for 36.7% of the instrumental temperature variance during the period of 1960–2012. Warm springs and early summers occurred during AD 1870–1873, 1909–1914, 1927–1958 and 1997–2012, while the periods of AD 1874–1908, 1915–1926 and 1959–1996 were relatively cold. Spatial climate correlation analyses with gridded land surface data revealed that our temperature reconstruction contains a strong regional temperature signal for central China. The linkages of ourtemperature reconstruction with sea surface temperature in the Atlantic and Pacific oceans suggest the connection of regional temperature variations to large-scale ocean–atmosphere–land circulation. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction also shows that there is a relationship between extremes in spring and early summer temperature and anomalous atmospheric circulation in the Qinling Mountains. Overall, our study provides reliable information for the research of past temperature variability in the Qinling Mountains, China.展开更多
基金supported by the Basic Research Operating Expenses of the Central-level Non-profit Research Institutes of China (IDM201105)the Open Foundation of MOE Key Laboratory of Western China's Environmental System, Lanzhou Universitythe Fundamental Research Funds for the Central Universities (lzujbky-2011-t02)
文摘We have developed a 202-year tree-ring width chronology of Shensi fir(Abies chensiensis) growing in an open canopy forest at the treeline of the eastern Qinling Mountains. Climate response analyses revealed that the ring width of Shensi fir trees is primarily controlled by the range of temperature from February–June. The regression model that we used for statistical temperature reconstruction passed the leave-one-out cross-validation used in dendroclimatology, resulting in a quality-controlled February–June reconstruction for the eastern Qinling Mountains. The model accounts for 36.7% of the instrumental temperature variance during the period of 1960–2012. Warm springs and early summers occurred during AD 1870–1873, 1909–1914, 1927–1958 and 1997–2012, while the periods of AD 1874–1908, 1915–1926 and 1959–1996 were relatively cold. Spatial climate correlation analyses with gridded land surface data revealed that our temperature reconstruction contains a strong regional temperature signal for central China. The linkages of ourtemperature reconstruction with sea surface temperature in the Atlantic and Pacific oceans suggest the connection of regional temperature variations to large-scale ocean–atmosphere–land circulation. Preliminary analysis of links between large-scale climatic variation and the temperature reconstruction also shows that there is a relationship between extremes in spring and early summer temperature and anomalous atmospheric circulation in the Qinling Mountains. Overall, our study provides reliable information for the research of past temperature variability in the Qinling Mountains, China.