The microfabrication technique for THz dipole antenna,"lift-off" was studied in this paper.Its procedure has been examined in detail,and discreetly tweaked.Particularly,Chlorobenzene is suggested to assist t...The microfabrication technique for THz dipole antenna,"lift-off" was studied in this paper.Its procedure has been examined in detail,and discreetly tweaked.Particularly,Chlorobenzene is suggested to assist the formation of undercut indispensible for fulfilling "lift-off".The experimental results of fabricated antennas confirm the effectiveness of this method.展开更多
Silver nanowires (AgNWs) surrounded by insulating poly(vinylpyrrolidone) have been synthesized by a polyol process and employed as transparent electrodes. The AgNW transparent electrodes can be fabricated by heatt...Silver nanowires (AgNWs) surrounded by insulating poly(vinylpyrrolidone) have been synthesized by a polyol process and employed as transparent electrodes. The AgNW transparent electrodes can be fabricated by heattreatment at about 200 ℃ which forms connecting junctions between AgNWs. Such a heating process is, however, one of the drawbacks of the fabrication of AgNW electrodes on heat-sensitive substrates. Here it has been demonstrated that the electrical conductivity of AgNW electrodes can be improved by mechanical pressing at 25 MPa for 5 s at room temperature. This simple process results in a low sheet resistance of 8.6 Ω/square and a transparency of 80.0%, equivalent to the properties of the AgNW electrodes heated at 200 ℃. This technique makes it possible to fabricate AgNW transparent electrodes on heat-sensitive substrates. The AgNW electrodes on poly(ethylene terephthalate) films exhibited high stability of their electrical conductivities against the repeated bending test. In addition, the surface roughness of the pressed AgNW electrodes is one-third of that of the heat-treated electrode because the AgNW junctions are mechanically compressed. As a result, an organic solar cell fabricated on the pressed AgNW electrodes exhibited a power conversion as much as those fabricated on indium tin oxide electrodes. These findings enable continuous roll-to-roll processing at room temperature, resulting in relatively simple, inexpensive, and scalable processing that is suitable for forthcoming technologies such as organic solar cells, flexible displays, and touch screens.展开更多
文摘The microfabrication technique for THz dipole antenna,"lift-off" was studied in this paper.Its procedure has been examined in detail,and discreetly tweaked.Particularly,Chlorobenzene is suggested to assist the formation of undercut indispensible for fulfilling "lift-off".The experimental results of fabricated antennas confirm the effectiveness of this method.
文摘Silver nanowires (AgNWs) surrounded by insulating poly(vinylpyrrolidone) have been synthesized by a polyol process and employed as transparent electrodes. The AgNW transparent electrodes can be fabricated by heattreatment at about 200 ℃ which forms connecting junctions between AgNWs. Such a heating process is, however, one of the drawbacks of the fabrication of AgNW electrodes on heat-sensitive substrates. Here it has been demonstrated that the electrical conductivity of AgNW electrodes can be improved by mechanical pressing at 25 MPa for 5 s at room temperature. This simple process results in a low sheet resistance of 8.6 Ω/square and a transparency of 80.0%, equivalent to the properties of the AgNW electrodes heated at 200 ℃. This technique makes it possible to fabricate AgNW transparent electrodes on heat-sensitive substrates. The AgNW electrodes on poly(ethylene terephthalate) films exhibited high stability of their electrical conductivities against the repeated bending test. In addition, the surface roughness of the pressed AgNW electrodes is one-third of that of the heat-treated electrode because the AgNW junctions are mechanically compressed. As a result, an organic solar cell fabricated on the pressed AgNW electrodes exhibited a power conversion as much as those fabricated on indium tin oxide electrodes. These findings enable continuous roll-to-roll processing at room temperature, resulting in relatively simple, inexpensive, and scalable processing that is suitable for forthcoming technologies such as organic solar cells, flexible displays, and touch screens.