作为中国首颗综合性太阳探测卫星的先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)于北京时间2022年10月9日7时43分在酒泉卫星发射中心成功发射.扼要介绍ASO-S卫星提出的背景、卫星的研制历程、科学目标、载荷构成...作为中国首颗综合性太阳探测卫星的先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)于北京时间2022年10月9日7时43分在酒泉卫星发射中心成功发射.扼要介绍ASO-S卫星提出的背景、卫星的研制历程、科学目标、载荷构成、任务总体以及卫星研制的组织架构,并对卫星的运行和科学产出略作展望.展开更多
Formation of pyrite (FeS 2) films through electrodeposition from aqueous solutions which contain different source materials has been investigated. Na 2S 2O 3·5H 2O is used as sulfur source material, FeSO 4·7...Formation of pyrite (FeS 2) films through electrodeposition from aqueous solutions which contain different source materials has been investigated. Na 2S 2O 3·5H 2O is used as sulfur source material, FeSO 4·7H 2O, FeCl 2·4H 2O and FeCl 3·6H 2O are used as iron source materials respectively. The samples are annealed in N 2 atmosphere at 400 ℃ and 500 ℃ respectively. From XRD (X-ray diffraction) patterns of the films, it is found that there are peaks of FeS 2, FeS and Fe 7S 8 in all films, but there are sharp and more peaks characterizing FeS 2 in the film from Na 2S 2O 3 +FeSO 4 than other films, and 400 ℃ is the more suitable temperature than 500 ℃ for annealing the samples in N 2 atmosphere. In addition, one solution can be used repeatedly.展开更多
Cupric oxide(CuO) is considered to be a promising material for photovoltaie applications. In this paper, p-CuO/n-Si junction solar cells were obtained by thermal oxidation of metallic copper films deposited on n-Si ...Cupric oxide(CuO) is considered to be a promising material for photovoltaie applications. In this paper, p-CuO/n-Si junction solar cells were obtained by thermal oxidation of metallic copper films deposited on n-Si substrates at 400 ℃ for 5 h. X-ray diffraction patterns show that the as-prepared films are CuO with monoelinic crystalline structure. Hall effect measurement results show that CuO films are p-type conduction. A direct band-gap of -1.57 eV for the CuO film is deduced from UV-Vis absorbance spectra. Solar cells of Cu/p-CuO/n-Si/Al structure show that its photovoltaic behavior has a much wider spectrum response width compared with that of Si solar cells. In addition, the photocurrent of CuO/n-Si junction is investigated as a function of CuO film thickness, and it is found that the critical thickness for CuO on Si is about 250 nm.展开更多
X-ray bright points (XBPs) are small-scale brightenings in the solar corona. Their counterparts in the lower atmosphere, how- ever, are poorly investigated. In this paper, we study the counterparts of XBPs in the up...X-ray bright points (XBPs) are small-scale brightenings in the solar corona. Their counterparts in the lower atmosphere, how- ever, are poorly investigated. In this paper, we study the counterparts of XBPs in the upper chromosphere where the Hot line center is formed. The XBPs were observed by the X-ray Telescope (XRT) aboard the Hinode spacecraft during the observing plan (HOP0124) in August 2009, coordinated with the Solar Magnetic Activity Research Telescope (SMART) in the Kwasan and Hida Observatory, Kyoto University. It is found that there are 77 Hot brightenings in the same field of view of XRT, and among 57 XBPs, 29 have counterparts in the Hot channel. We found three types of relationship: Types a, b and c, correspond- ing to XBPs appearing first, Hot brightenings occurring first and no respective correspondence between them. Most of the strong XBPs belong to Type a. The Hot counterparts generally have double-kernel structures associated with magnetic bipoles and are cospatial with the footpoints of the XBP loops. The average lag time is -3 minutes. This implies that for Type a the heating, presumably through magnetic reconnection, occurs first in the solar upper atmosphere and then goes downwards along the small-scale magnetic loops that comprise the XBPs. In this case, the thermal conduction plays a dominant role over the non-thermal heating. Only a few events belong to Type b, which could happen when magnetic reconnection occurs in the chromosphere and produces an upward jet which heats the upper atmosphere and causes the XBP. About half of the XBPs belong to Type c. Generally they have weak emission in SXR. About 62% Hot brightenings have no corresponding XBPs. Most of them are weak and have single structures.展开更多
Perovskite solar cells(PSCs)commonly exhibit significant performance degradation due to ion migration through the top charge transport layer and ultimately metal electrode corrosion.Here,we demonstrate an interfacial ...Perovskite solar cells(PSCs)commonly exhibit significant performance degradation due to ion migration through the top charge transport layer and ultimately metal electrode corrosion.Here,we demonstrate an interfacial management strategy using a boron chloride subphthalocyanine(Cl_(6)SubPc)/fullerene electron-transport layer,which not only passivates the interfacial defects in the perovskite,but also suppresses halide diffusion as evidenced by multiple techniques,including visual element mapping by electron energy loss spectroscopy.As a result,we obtain inverted PSCs with an efficiency of 22.0%(21.3%certified),shelf life of 7000 h,T_(80) of 816 h under damp heat stress(compared to less than 20 h without Cl_(6)SubPc),and initial performance retention of 98%after 2000 h at 80℃in inert environment,90%after 2034 h of illumination and maximum power point tracking in ambient for encapsulated devices and 95%after 1272 h outdoor testing ISOS-O-1.Our strategy and results pave a new way to move PSCs forward to their potential commercialization solidly.展开更多
文摘作为中国首颗综合性太阳探测卫星的先进天基太阳天文台(Advanced Space-based Solar Observatory,ASO-S)于北京时间2022年10月9日7时43分在酒泉卫星发射中心成功发射.扼要介绍ASO-S卫星提出的背景、卫星的研制历程、科学目标、载荷构成、任务总体以及卫星研制的组织架构,并对卫星的运行和科学产出略作展望.
文摘Formation of pyrite (FeS 2) films through electrodeposition from aqueous solutions which contain different source materials has been investigated. Na 2S 2O 3·5H 2O is used as sulfur source material, FeSO 4·7H 2O, FeCl 2·4H 2O and FeCl 3·6H 2O are used as iron source materials respectively. The samples are annealed in N 2 atmosphere at 400 ℃ and 500 ℃ respectively. From XRD (X-ray diffraction) patterns of the films, it is found that there are peaks of FeS 2, FeS and Fe 7S 8 in all films, but there are sharp and more peaks characterizing FeS 2 in the film from Na 2S 2O 3 +FeSO 4 than other films, and 400 ℃ is the more suitable temperature than 500 ℃ for annealing the samples in N 2 atmosphere. In addition, one solution can be used repeatedly.
基金Chinese National Natural Science Foundation(60576063)The Science and Technology Project of Zhejiang province(2008F70015)
文摘Cupric oxide(CuO) is considered to be a promising material for photovoltaie applications. In this paper, p-CuO/n-Si junction solar cells were obtained by thermal oxidation of metallic copper films deposited on n-Si substrates at 400 ℃ for 5 h. X-ray diffraction patterns show that the as-prepared films are CuO with monoelinic crystalline structure. Hall effect measurement results show that CuO films are p-type conduction. A direct band-gap of -1.57 eV for the CuO film is deduced from UV-Vis absorbance spectra. Solar cells of Cu/p-CuO/n-Si/Al structure show that its photovoltaic behavior has a much wider spectrum response width compared with that of Si solar cells. In addition, the photocurrent of CuO/n-Si junction is investigated as a function of CuO film thickness, and it is found that the critical thickness for CuO on Si is about 250 nm.
基金supported by the National Basic Research Program of China (Grant No.2011CB811402)the National Natural Science Foundation of China (Grant Nos.10878002,10610099,10933003,10673004,10073005,10403003,and 11025314)
文摘X-ray bright points (XBPs) are small-scale brightenings in the solar corona. Their counterparts in the lower atmosphere, how- ever, are poorly investigated. In this paper, we study the counterparts of XBPs in the upper chromosphere where the Hot line center is formed. The XBPs were observed by the X-ray Telescope (XRT) aboard the Hinode spacecraft during the observing plan (HOP0124) in August 2009, coordinated with the Solar Magnetic Activity Research Telescope (SMART) in the Kwasan and Hida Observatory, Kyoto University. It is found that there are 77 Hot brightenings in the same field of view of XRT, and among 57 XBPs, 29 have counterparts in the Hot channel. We found three types of relationship: Types a, b and c, correspond- ing to XBPs appearing first, Hot brightenings occurring first and no respective correspondence between them. Most of the strong XBPs belong to Type a. The Hot counterparts generally have double-kernel structures associated with magnetic bipoles and are cospatial with the footpoints of the XBP loops. The average lag time is -3 minutes. This implies that for Type a the heating, presumably through magnetic reconnection, occurs first in the solar upper atmosphere and then goes downwards along the small-scale magnetic loops that comprise the XBPs. In this case, the thermal conduction plays a dominant role over the non-thermal heating. Only a few events belong to Type b, which could happen when magnetic reconnection occurs in the chromosphere and produces an upward jet which heats the upper atmosphere and causes the XBP. About half of the XBPs belong to Type c. Generally they have weak emission in SXR. About 62% Hot brightenings have no corresponding XBPs. Most of them are weak and have single structures.
基金supported by the National Natural Science Foundation of China (61775091, and U2001216)the Shenzhen Key Laboratory Project (ZDSYS201602261933302)+2 种基金Natural Science Foundation of Shenzhen Innovation Committee (JCYJ20180504165851864)the support of Research Grants Council Collaborative Research Fund (RGC- CRF) grant C5037-18GSeed Funding for Strategic Interdisciplinary Research Scheme of the University of Hong Kong and Shenzhen Science and Technology Commission Projects (JCYJ20170818141216288)
文摘Perovskite solar cells(PSCs)commonly exhibit significant performance degradation due to ion migration through the top charge transport layer and ultimately metal electrode corrosion.Here,we demonstrate an interfacial management strategy using a boron chloride subphthalocyanine(Cl_(6)SubPc)/fullerene electron-transport layer,which not only passivates the interfacial defects in the perovskite,but also suppresses halide diffusion as evidenced by multiple techniques,including visual element mapping by electron energy loss spectroscopy.As a result,we obtain inverted PSCs with an efficiency of 22.0%(21.3%certified),shelf life of 7000 h,T_(80) of 816 h under damp heat stress(compared to less than 20 h without Cl_(6)SubPc),and initial performance retention of 98%after 2000 h at 80℃in inert environment,90%after 2034 h of illumination and maximum power point tracking in ambient for encapsulated devices and 95%after 1272 h outdoor testing ISOS-O-1.Our strategy and results pave a new way to move PSCs forward to their potential commercialization solidly.