The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller th...The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller that is able to set the output value of the voltage and ensure the working within the maximum power point. In this paper, we propose the application of the robust sliding mode control technique to a DC-DC buck converter which is combined with a classical P & O (perturbation and observation) algorithm to enhance the solar system efficiency. Dynamic equations describing the boost converter are derived and a sliding mode controller for a buck converter is designed. It is shown that, this control approach gives good results in terms of robustness toward load and input voltage variations. The effectiveness of the proposed work is verified by the simulation results under PowerSim environment.展开更多
New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if th...New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics for remote residential household power generation. A complete solar thermoelectric energy harvesting system is presented in this paper for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing transient heat transfer with the SPICE simulator; however a few of the problems to be solved remain at the practical level. Despite the unusual operation of the thermoelectric modules with the solar radiation, the simulation and measurements were in good agreement, thus validating the new modeling strategy.展开更多
In the solar atmosphere, there exist two frequently-observed phenomena, Moreton waves and EIT(extreme-ultraviolet imaging telescope) waves, whose physical nature is still under debate. In this work, we perform a three...In the solar atmosphere, there exist two frequently-observed phenomena, Moreton waves and EIT(extreme-ultraviolet imaging telescope) waves, whose physical nature is still under debate. In this work, we perform a three-dimensional ray-tracing simulation for the propagation of fast magnetoacoustic waves. We build a stratified solar atmosphere model and take partial ionization into consideration to give an exact description of chromosphere and transition region. The calculated result is compared with a flare event observation in which both Moreton waves and EIT waves were present. In agreement with observations, the calculated wavefront show different kinematical characteristics in different propagation directions during different times.Moreton waves and EIT waves have higher propagation speeds near the active region where the magnetic field strength is strong. The result suggests that both Moreton waves and EIT waves of this event can be interpreted as the fast magnetoacoustic waves propagating at different heights in the solar atmosphere.展开更多
Solar thermal propulsion system includes solar thermal propulsion and nuclear thermal propulsion, and it is a significant issue to improve the heat transfer efficiency of the solar thermal thruster. This paper propose...Solar thermal propulsion system includes solar thermal propulsion and nuclear thermal propulsion, and it is a significant issue to improve the heat transfer efficiency of the solar thermal thruster. This paper proposes a platelet configuration to be used in the heat exchanger core, which is the most important component of solar thermal system. The platelet passage can enhance the heat transfer between the propellant and the hot core heated by the concentrated sunlight. Based on fluid-solid coupled heat transfer, the paper utilized the platelet heat transfer characteristic to simulate the heat transfer and flow field of the platelet passage. A coupled system includes the coupled flow and heat transfer between the fluid region and solid region. The simulation result shows that the propellant can be heated to the design temperature of 2300K in platelet passage of the thermal propulsion system, and the fluid-solid coupled method can solve the heat transfer in the platelet structure more precisely.展开更多
文摘The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller that is able to set the output value of the voltage and ensure the working within the maximum power point. In this paper, we propose the application of the robust sliding mode control technique to a DC-DC buck converter which is combined with a classical P & O (perturbation and observation) algorithm to enhance the solar system efficiency. Dynamic equations describing the boost converter are derived and a sliding mode controller for a buck converter is designed. It is shown that, this control approach gives good results in terms of robustness toward load and input voltage variations. The effectiveness of the proposed work is verified by the simulation results under PowerSim environment.
文摘New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics for remote residential household power generation. A complete solar thermoelectric energy harvesting system is presented in this paper for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing transient heat transfer with the SPICE simulator; however a few of the problems to be solved remain at the practical level. Despite the unusual operation of the thermoelectric modules with the solar radiation, the simulation and measurements were in good agreement, thus validating the new modeling strategy.
基金the National Natural Science Foundation of China(Grant Nos.41274174,41422405,41274169&41421063)the Fundamental Research Funds for the Central Universities(Grant No.WK2080000077)
文摘In the solar atmosphere, there exist two frequently-observed phenomena, Moreton waves and EIT(extreme-ultraviolet imaging telescope) waves, whose physical nature is still under debate. In this work, we perform a three-dimensional ray-tracing simulation for the propagation of fast magnetoacoustic waves. We build a stratified solar atmosphere model and take partial ionization into consideration to give an exact description of chromosphere and transition region. The calculated result is compared with a flare event observation in which both Moreton waves and EIT waves were present. In agreement with observations, the calculated wavefront show different kinematical characteristics in different propagation directions during different times.Moreton waves and EIT waves have higher propagation speeds near the active region where the magnetic field strength is strong. The result suggests that both Moreton waves and EIT waves of this event can be interpreted as the fast magnetoacoustic waves propagating at different heights in the solar atmosphere.
文摘Solar thermal propulsion system includes solar thermal propulsion and nuclear thermal propulsion, and it is a significant issue to improve the heat transfer efficiency of the solar thermal thruster. This paper proposes a platelet configuration to be used in the heat exchanger core, which is the most important component of solar thermal system. The platelet passage can enhance the heat transfer between the propellant and the hot core heated by the concentrated sunlight. Based on fluid-solid coupled heat transfer, the paper utilized the platelet heat transfer characteristic to simulate the heat transfer and flow field of the platelet passage. A coupled system includes the coupled flow and heat transfer between the fluid region and solid region. The simulation result shows that the propellant can be heated to the design temperature of 2300K in platelet passage of the thermal propulsion system, and the fluid-solid coupled method can solve the heat transfer in the platelet structure more precisely.