This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energ...This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development.展开更多
Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demons...Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic(PV) grid power,PV off- grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual controller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage battery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.展开更多
Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of s...Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology and actual energy production. Solar energy is widely under-used and one way to reduce this is to improve production in low-energy places with high demand: large cities. According to this option, about 40% of the electricity consumption in the built environment could be produced by solar PV systems and energy storage systems. This paper discusses conditions in the built environment and functional and design qualities enabling an increased diffusion of the technologies In a comparative analysis of PV technologies, the criteria taken into account encompass efficiency of the type of solar cell and commercial availability. Special attention is paid to the design features of different PV systems, like flexibility, colour and transparency that might help in their utilization as integrated in building material and ornaments in modem architecture. The same procedure is followed for electricity storage devices. The preliminary conclusion is that at present the freedom of design is largest for a combination of crystalline silicon PV cells and Li-ion batteries.展开更多
This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield...This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.展开更多
Embracing renewable energy technology makes a lot of sense for the public sectors and schools as it meets the government sustainability goals and provides a financially viable means of achieving carbon savings while o...Embracing renewable energy technology makes a lot of sense for the public sectors and schools as it meets the government sustainability goals and provides a financially viable means of achieving carbon savings while offering income potential. This study is aimed to quantify the achievable energy saving by spread use ofphotovoltaic systems on public building stock in the city of Rome. The installation of PV (photovoltaic) systems in the historic center depends on the feasibility conditions, generally more complex compared to the cases examined in the consolidated city, because they require compliance with the formal and aesthetic characteristics of the buildings, so the choice must be made between compatible components, which allow to minimize the transformation. The suburbs are characterized by large plane roofs in bad conditions and belonging to isolated buildings, so the useful surface, according to shading condition, offers a big potential for renewable technologies. The research provides an evaluation of maximum production of solar energy and the subsequent energy saving and reduction of greenhouse gasses, using parametric data, and an evaluation of the cost-effectiveness, with a rough calculation of return on investment.展开更多
In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same ti...In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same time, power consumption is continuously increasing, and consumers are becoming more complex, which ultimately requires new investments in the distribution network. Concept of smart grids is generally accepted as a possible solution. Smart grid is a concept with many elements, where monitoring and control of every element in the chain of production, transmission, distribution and final consumption enable much more efficient delivery and use of electricity. One of the elements of smart grid efficiency is the ability of real-time demand-supply balancing. This balancing is carried out by monitoring of consumption and redistribution of electricity among individual end users, according to their needs. The aim of this paper is creating algorithm for real-time load management using power measurements. Algorithm for real-time load management at the ETFOS (Faculty of Electrical Engineering in Osijek), Croatia is created based on measurements of photovoltaic power plant production, the power consumption of air conditioning system and the faculty building total electricity consumption. Expected result of real-time re-dispatching of air conditioners consumption, depending on the level of electricity production in photovoltaic power plant is decreasing peak demand of the faculty.展开更多
The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting...The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting and air conditioning in a production line of a factory when solar energy is available. It does not feed the excess PV power to the grid. HyPV will be switched to grid power supply when solar energy is not available. A 3 kWp DGPVi is installed in a factory for field demonstration. The test results show that the solar PV power generated can be utilized immediately. The solar energy generation efficiency (kWh/day per kWp PV installation) of DGPVi is close to that of grid-tied PV system without self-consumption and battery storage. The yearly return on investment of DGPVi is 2.0% at the present installation cost or 3.3% at further cost-down cost. The payback time will be 14.3 years at the present installation cost or 12.1 years at cost-down cost. The present study verifies the economic feasibility of DGPVi.展开更多
The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magn...The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magnet synchronous generator with variable speed wind turbine is used in the simulation analysis as a wind generator model. The transient stability analysis is performed for IEEE 9-bus system model with high-penetration renewable power sources. The effect of FRT (fault ride-through) capability implemented for each power source on the transient stability is investigated.展开更多
PV (photovoltaic) solar panels generally produce electricity in the 6% to 12% efficiency range, the rest is being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PV/T) ha...PV (photovoltaic) solar panels generally produce electricity in the 6% to 12% efficiency range, the rest is being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PV/T) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PV/T system as part of a closed loop single phase water CDU (coolant distribution unit) in laminar forced convection. In particular, the analysis was conducted on the optimal cooling performance of the thermal part, testing polynomial channel profiles of varying order (from zero to fourth) for channels of a real industrial module heat sink, under the following conditions: ideal flux of 1,000 W/m2 on one side, insulation on the opposite side, periodic conditions on the remaining sides, fully developed thermal and velocity profile in laminar flow of water. Through the use of a genetic algorithm, we have optimized the shape of the channel's sidewalls in terms of heat transfer maximization. In terms of Nusselt number, results show that fourth order profiles are the most efficient. When limits to allowable pressure loss and module weight are introduced, these bring generally to a lower efficiency of the system than the unconstrained case.展开更多
In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to ...In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to reduce GHG emission level, most of the countries in the world targeting towards green energy that is power generation from RE (renewable energy) sources. In this paper, it is considered to study prospects of RE sources in particular, solar and wind in Victoria State which are abundant as compared to other sources of renewable. The wind and solar energy feasibility study and sensitivity analysis has been done for Victoria with the aid of HOMER (hybrid optimization model of electric renewable) simulation software. From the study, it has clearly evicted that wind energy combinational HPS (hybrid power system) has more contribution, and high potential than solar PV (photovoltaic) systems for a particular location. This study also investigates the influences of energy storage in the proposed HPS.展开更多
This paper describes relatively simple stochastic model of the total ground irradiance of horizontal surface. For this purpose clearness index is modeled as a stochastic signal. The parameters of clearness index stoch...This paper describes relatively simple stochastic model of the total ground irradiance of horizontal surface. For this purpose clearness index is modeled as a stochastic signal. The parameters of clearness index stochastic signal are chosen to fit values of daily mean insolation for each month for the location of Zagreb, Croatia. Complete model has been done in MATLAB. This model can be used for Monte Carlo simulations of technical solar systems such as photovoltaic systems or solar thermal energy systems.展开更多
A PV (photovoltaic) solar panels exhibit non-linear current--voltage characteristics, and according to the MPT (maximum power transform) theory, it can produce maximum power at only one particular OP (operating p...A PV (photovoltaic) solar panels exhibit non-linear current--voltage characteristics, and according to the MPT (maximum power transform) theory, it can produce maximum power at only one particular OP (operating point); namely, when the source impedance matches with the load impedance, a match which cannot be guaranteed spontaneously. Furthermore, the MPP (maximum power point) changes with temperature and light intensity variations. Therefore, different algorithms have been developed for finding MPPT (maximum power point tracking) based on offline and online methods. Evaluating the performance of these algorithms for various PV systems operating under highly dynamic environments are essentials to ensure producing reliable, efficient, cost-effective and high performance systems. One possible approach for system evaluation is to use computer simulation. This paper addresses the use of Matlab software as a simulation tool for evaluating the performance of PV solar systems and finding the MPPT.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: o...A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.展开更多
文摘This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development.
基金China Southern Power Grid New Energy Experimental Project(No.03HC0901578)
文摘Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic(PV) grid power,PV off- grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual controller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage battery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.
文摘Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology and actual energy production. Solar energy is widely under-used and one way to reduce this is to improve production in low-energy places with high demand: large cities. According to this option, about 40% of the electricity consumption in the built environment could be produced by solar PV systems and energy storage systems. This paper discusses conditions in the built environment and functional and design qualities enabling an increased diffusion of the technologies In a comparative analysis of PV technologies, the criteria taken into account encompass efficiency of the type of solar cell and commercial availability. Special attention is paid to the design features of different PV systems, like flexibility, colour and transparency that might help in their utilization as integrated in building material and ornaments in modem architecture. The same procedure is followed for electricity storage devices. The preliminary conclusion is that at present the freedom of design is largest for a combination of crystalline silicon PV cells and Li-ion batteries.
文摘This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.
文摘Embracing renewable energy technology makes a lot of sense for the public sectors and schools as it meets the government sustainability goals and provides a financially viable means of achieving carbon savings while offering income potential. This study is aimed to quantify the achievable energy saving by spread use ofphotovoltaic systems on public building stock in the city of Rome. The installation of PV (photovoltaic) systems in the historic center depends on the feasibility conditions, generally more complex compared to the cases examined in the consolidated city, because they require compliance with the formal and aesthetic characteristics of the buildings, so the choice must be made between compatible components, which allow to minimize the transformation. The suburbs are characterized by large plane roofs in bad conditions and belonging to isolated buildings, so the useful surface, according to shading condition, offers a big potential for renewable technologies. The research provides an evaluation of maximum production of solar energy and the subsequent energy saving and reduction of greenhouse gasses, using parametric data, and an evaluation of the cost-effectiveness, with a rough calculation of return on investment.
文摘In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same time, power consumption is continuously increasing, and consumers are becoming more complex, which ultimately requires new investments in the distribution network. Concept of smart grids is generally accepted as a possible solution. Smart grid is a concept with many elements, where monitoring and control of every element in the chain of production, transmission, distribution and final consumption enable much more efficient delivery and use of electricity. One of the elements of smart grid efficiency is the ability of real-time demand-supply balancing. This balancing is carried out by monitoring of consumption and redistribution of electricity among individual end users, according to their needs. The aim of this paper is creating algorithm for real-time load management using power measurements. Algorithm for real-time load management at the ETFOS (Faculty of Electrical Engineering in Osijek), Croatia is created based on measurements of photovoltaic power plant production, the power consumption of air conditioning system and the faculty building total electricity consumption. Expected result of real-time re-dispatching of air conditioners consumption, depending on the level of electricity production in photovoltaic power plant is decreasing peak demand of the faculty.
文摘The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting and air conditioning in a production line of a factory when solar energy is available. It does not feed the excess PV power to the grid. HyPV will be switched to grid power supply when solar energy is not available. A 3 kWp DGPVi is installed in a factory for field demonstration. The test results show that the solar PV power generated can be utilized immediately. The solar energy generation efficiency (kWh/day per kWp PV installation) of DGPVi is close to that of grid-tied PV system without self-consumption and battery storage. The yearly return on investment of DGPVi is 2.0% at the present installation cost or 3.3% at further cost-down cost. The payback time will be 14.3 years at the present installation cost or 12.1 years at cost-down cost. The present study verifies the economic feasibility of DGPVi.
文摘The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magnet synchronous generator with variable speed wind turbine is used in the simulation analysis as a wind generator model. The transient stability analysis is performed for IEEE 9-bus system model with high-penetration renewable power sources. The effect of FRT (fault ride-through) capability implemented for each power source on the transient stability is investigated.
文摘PV (photovoltaic) solar panels generally produce electricity in the 6% to 12% efficiency range, the rest is being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PV/T) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PV/T system as part of a closed loop single phase water CDU (coolant distribution unit) in laminar forced convection. In particular, the analysis was conducted on the optimal cooling performance of the thermal part, testing polynomial channel profiles of varying order (from zero to fourth) for channels of a real industrial module heat sink, under the following conditions: ideal flux of 1,000 W/m2 on one side, insulation on the opposite side, periodic conditions on the remaining sides, fully developed thermal and velocity profile in laminar flow of water. Through the use of a genetic algorithm, we have optimized the shape of the channel's sidewalls in terms of heat transfer maximization. In terms of Nusselt number, results show that fourth order profiles are the most efficient. When limits to allowable pressure loss and module weight are introduced, these bring generally to a lower efficiency of the system than the unconstrained case.
文摘In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to reduce GHG emission level, most of the countries in the world targeting towards green energy that is power generation from RE (renewable energy) sources. In this paper, it is considered to study prospects of RE sources in particular, solar and wind in Victoria State which are abundant as compared to other sources of renewable. The wind and solar energy feasibility study and sensitivity analysis has been done for Victoria with the aid of HOMER (hybrid optimization model of electric renewable) simulation software. From the study, it has clearly evicted that wind energy combinational HPS (hybrid power system) has more contribution, and high potential than solar PV (photovoltaic) systems for a particular location. This study also investigates the influences of energy storage in the proposed HPS.
文摘This paper describes relatively simple stochastic model of the total ground irradiance of horizontal surface. For this purpose clearness index is modeled as a stochastic signal. The parameters of clearness index stochastic signal are chosen to fit values of daily mean insolation for each month for the location of Zagreb, Croatia. Complete model has been done in MATLAB. This model can be used for Monte Carlo simulations of technical solar systems such as photovoltaic systems or solar thermal energy systems.
文摘A PV (photovoltaic) solar panels exhibit non-linear current--voltage characteristics, and according to the MPT (maximum power transform) theory, it can produce maximum power at only one particular OP (operating point); namely, when the source impedance matches with the load impedance, a match which cannot be guaranteed spontaneously. Furthermore, the MPP (maximum power point) changes with temperature and light intensity variations. Therefore, different algorithms have been developed for finding MPPT (maximum power point tracking) based on offline and online methods. Evaluating the performance of these algorithms for various PV systems operating under highly dynamic environments are essentials to ensure producing reliable, efficient, cost-effective and high performance systems. One possible approach for system evaluation is to use computer simulation. This paper addresses the use of Matlab software as a simulation tool for evaluating the performance of PV solar systems and finding the MPPT.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
基金supported by the National Basic Research Program of China ("973" Program), (Grantt No. 2010CB227305)the CAS Solar Energy Action Program (Grant No. CX2090130012)
文摘A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.