This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energ...This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development.展开更多
Colloidal semiconductor nanocrystals have been proven to be promising candidates for applications in low‐cost and high‐performance photovoltaics,bioimaging,and photocatalysis due to their novel size‐and shape‐depe...Colloidal semiconductor nanocrystals have been proven to be promising candidates for applications in low‐cost and high‐performance photovoltaics,bioimaging,and photocatalysis due to their novel size‐and shape‐dependent properties.Among the colloidal systems,I‐III‐VI semiconductor nanocrystals(NCs)have drawn much attention in the past few decades.Compared to binary NCs,ternary I‐III‐VI NCs not only exhibit low toxicity,but also a high performance similar to that of binary NCs.In this review,we mainly focus on the synthesis,properties,and applications of I‐III‐VI NCs.We summarize the major synthesis methods,analyze their photophysical and electronic properties,and highlight some of the latest applications of I‐III‐VI NCs in solar cells,light‐emitting diodes,bioimaging,and photocatalysis.Finally,based on the information reviewed,we highlight the existing problems and challenges.展开更多
Renewable energy options, including solar power, are becoming increasingly viable alternatives to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic (PV) technology is one type of ...Renewable energy options, including solar power, are becoming increasingly viable alternatives to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic (PV) technology is one type of solar energy technologies that has recently received substantial attention because it offers the possibility of providing clean power sources for buildings. The aim of this paper is to examine the economic viability of using solar PV within future residential buildings in the oil-rich Saudi Arabia. Strictly speaking, the prospects of using the PV in order to provide 10% of the electricity to be consumed in the houses, which are going to be built in Sandi Arabia over the period 2010-2025, are examined. The study reveals that significant economic and environmental benefits could be realized as a result of such an endeavor.展开更多
The performance of each type of building must meet all the needs and requests of new real estate markets. In fact, in the excellent architectures, the user can manage, with autonomy and flexibility, each system and pr...The performance of each type of building must meet all the needs and requests of new real estate markets. In fact, in the excellent architectures, the user can manage, with autonomy and flexibility, each system and product, according to the new energy and building technologies too. The main objective is the social and environmental sustainability with the reduction of fossil fuels and the greenhouse gas effect, pushing the use of renewable energies, in a new trend of land regeneration with sustainable buildings and settlement recovery. The energy crisis, mainly generated by the climate change, the air pollution, with consequent extinction of the species, reduction of the land and the work, the degradation and the environmental and seismic risk, focuses on the security and quality of construction systems, integrated use of clean resources. The methodologies aimed at integrating of energy-efficient and innovative building technologies in architecture, from design to management, to produce electric and thermal energy with active and passive properties, for a high-performance habitat. Therefore, the use of solar photovoltaic in the buildings, BIPV (Building Integrated Photovoltaic) with high-performance glass vision, efficient systems, intelligent materials, is integrated in architectures with the use of innovative construction systems, finally, technology of OPV (Organic Photovoltaic), multi-junction cells, the dye sensitized solar cells in the solid state, etc., and adoption of storage systems.展开更多
Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demons...Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic(PV) grid power,PV off- grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual controller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage battery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.展开更多
Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of s...Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology and actual energy production. Solar energy is widely under-used and one way to reduce this is to improve production in low-energy places with high demand: large cities. According to this option, about 40% of the electricity consumption in the built environment could be produced by solar PV systems and energy storage systems. This paper discusses conditions in the built environment and functional and design qualities enabling an increased diffusion of the technologies In a comparative analysis of PV technologies, the criteria taken into account encompass efficiency of the type of solar cell and commercial availability. Special attention is paid to the design features of different PV systems, like flexibility, colour and transparency that might help in their utilization as integrated in building material and ornaments in modem architecture. The same procedure is followed for electricity storage devices. The preliminary conclusion is that at present the freedom of design is largest for a combination of crystalline silicon PV cells and Li-ion batteries.展开更多
The electrical new technology is a new frontier science.This kind of technology, with the development and progress of society, makes the continuous development and innovation.It is the future development trend of elec...The electrical new technology is a new frontier science.This kind of technology, with the development and progress of society, makes the continuous development and innovation.It is the future development trend of electrical engineering system,which plays a very important role in technological innovation.The principle and theoretical support for the development of electrical new technology includes Bio- electro magnetics, plasma physics, electromagnetic fluid mechanics and gas discharge physics etc.In addition, under the application of permanent magnetic materials and other new materials, the electrical new technology and obtained further development also promote the development and application of electronic power supply, strong magnetic field technology, solar photovoltaic power generation, and superconducting power technology.This paper mainly analyzes the application of electrical new technology in electromechanical integration.展开更多
PV (photovoltaic) solar panels generally produce electricity in the 6% to 12% efficiency range, the rest is being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PV/T) ha...PV (photovoltaic) solar panels generally produce electricity in the 6% to 12% efficiency range, the rest is being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PV/T) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PV/T system as part of a closed loop single phase water CDU (coolant distribution unit) in laminar forced convection. In particular, the analysis was conducted on the optimal cooling performance of the thermal part, testing polynomial channel profiles of varying order (from zero to fourth) for channels of a real industrial module heat sink, under the following conditions: ideal flux of 1,000 W/m2 on one side, insulation on the opposite side, periodic conditions on the remaining sides, fully developed thermal and velocity profile in laminar flow of water. Through the use of a genetic algorithm, we have optimized the shape of the channel's sidewalls in terms of heat transfer maximization. In terms of Nusselt number, results show that fourth order profiles are the most efficient. When limits to allowable pressure loss and module weight are introduced, these bring generally to a lower efficiency of the system than the unconstrained case.展开更多
Embracing renewable energy technology makes a lot of sense for the public sectors and schools as it meets the government sustainability goals and provides a financially viable means of achieving carbon savings while o...Embracing renewable energy technology makes a lot of sense for the public sectors and schools as it meets the government sustainability goals and provides a financially viable means of achieving carbon savings while offering income potential. This study is aimed to quantify the achievable energy saving by spread use ofphotovoltaic systems on public building stock in the city of Rome. The installation of PV (photovoltaic) systems in the historic center depends on the feasibility conditions, generally more complex compared to the cases examined in the consolidated city, because they require compliance with the formal and aesthetic characteristics of the buildings, so the choice must be made between compatible components, which allow to minimize the transformation. The suburbs are characterized by large plane roofs in bad conditions and belonging to isolated buildings, so the useful surface, according to shading condition, offers a big potential for renewable technologies. The research provides an evaluation of maximum production of solar energy and the subsequent energy saving and reduction of greenhouse gasses, using parametric data, and an evaluation of the cost-effectiveness, with a rough calculation of return on investment.展开更多
This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield...This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.展开更多
The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting...The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting and air conditioning in a production line of a factory when solar energy is available. It does not feed the excess PV power to the grid. HyPV will be switched to grid power supply when solar energy is not available. A 3 kWp DGPVi is installed in a factory for field demonstration. The test results show that the solar PV power generated can be utilized immediately. The solar energy generation efficiency (kWh/day per kWp PV installation) of DGPVi is close to that of grid-tied PV system without self-consumption and battery storage. The yearly return on investment of DGPVi is 2.0% at the present installation cost or 3.3% at further cost-down cost. The payback time will be 14.3 years at the present installation cost or 12.1 years at cost-down cost. The present study verifies the economic feasibility of DGPVi.展开更多
In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same ti...In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same time, power consumption is continuously increasing, and consumers are becoming more complex, which ultimately requires new investments in the distribution network. Concept of smart grids is generally accepted as a possible solution. Smart grid is a concept with many elements, where monitoring and control of every element in the chain of production, transmission, distribution and final consumption enable much more efficient delivery and use of electricity. One of the elements of smart grid efficiency is the ability of real-time demand-supply balancing. This balancing is carried out by monitoring of consumption and redistribution of electricity among individual end users, according to their needs. The aim of this paper is creating algorithm for real-time load management using power measurements. Algorithm for real-time load management at the ETFOS (Faculty of Electrical Engineering in Osijek), Croatia is created based on measurements of photovoltaic power plant production, the power consumption of air conditioning system and the faculty building total electricity consumption. Expected result of real-time re-dispatching of air conditioners consumption, depending on the level of electricity production in photovoltaic power plant is decreasing peak demand of the faculty.展开更多
In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to ...In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to reduce GHG emission level, most of the countries in the world targeting towards green energy that is power generation from RE (renewable energy) sources. In this paper, it is considered to study prospects of RE sources in particular, solar and wind in Victoria State which are abundant as compared to other sources of renewable. The wind and solar energy feasibility study and sensitivity analysis has been done for Victoria with the aid of HOMER (hybrid optimization model of electric renewable) simulation software. From the study, it has clearly evicted that wind energy combinational HPS (hybrid power system) has more contribution, and high potential than solar PV (photovoltaic) systems for a particular location. This study also investigates the influences of energy storage in the proposed HPS.展开更多
A dish/stifling solar thermal electricity system consists of two parts: a dish solar concentrator and a Stifling engine. For optimizing the system, in this paper, the mathematical model for concentrator design was es...A dish/stifling solar thermal electricity system consists of two parts: a dish solar concentrator and a Stifling engine. For optimizing the system, in this paper, the mathematical model for concentrator design was established and the effects of those design parameters of concentrator, such as the size and intensity of the focal point, the receiver temperature, on the efficiency of the Stifling engine and output power were numerically simulated. The results of the simulation revealed a close relationship between power and efficiency because of power losses, and there was a maximum for the engine efficiency and power with increasing solar radiation because there was a peak value of system efficiency with increasing receiver temperature. So, in view of our Stifling engine, the 450 rim angle and 6m focal length are optimal design for concentrator and the 800℃receiver temperature is best.展开更多
The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magn...The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magnet synchronous generator with variable speed wind turbine is used in the simulation analysis as a wind generator model. The transient stability analysis is performed for IEEE 9-bus system model with high-penetration renewable power sources. The effect of FRT (fault ride-through) capability implemented for each power source on the transient stability is investigated.展开更多
Traditional light bulbs (e.g., incandescent, fluorescent) use too much electricity, convert very little energy into light of sufficient quality and in their production use toxic contaminants. During the last few yea...Traditional light bulbs (e.g., incandescent, fluorescent) use too much electricity, convert very little energy into light of sufficient quality and in their production use toxic contaminants. During the last few years, a new type of light source, LED (light emitting diode) bulb, has gained increasing popularity and its costs are set to plunge even further. LED bulbs offer many advantages over traditional sources, and they can be used as a direct replacement to existing lighting. This paper will use a spreadsheet-based analysis with hourly solar data supplied by Ecotect to show that, the efficiency of LED installations can be increased when used in conjunction with photovoltaic modules, as the two generate (and use) DC (direct-current) electricity, thereby eliminating intermediate-level losses in the electronic circuitry. If a storage battery is included, the solar panels generate electricity during the times when the occupants are not necessarily using the lighting, but the stored electricity can be used to power the lighting when the energy is required. The latest results demonstrate that, a slight reduction in the required floor area to be lit allows the solar-battery-LED system to be implemented in small buildings using a storage battery size that is within the range of present commercial devices.展开更多
CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is cl...CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.展开更多
文摘This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development.
文摘Colloidal semiconductor nanocrystals have been proven to be promising candidates for applications in low‐cost and high‐performance photovoltaics,bioimaging,and photocatalysis due to their novel size‐and shape‐dependent properties.Among the colloidal systems,I‐III‐VI semiconductor nanocrystals(NCs)have drawn much attention in the past few decades.Compared to binary NCs,ternary I‐III‐VI NCs not only exhibit low toxicity,but also a high performance similar to that of binary NCs.In this review,we mainly focus on the synthesis,properties,and applications of I‐III‐VI NCs.We summarize the major synthesis methods,analyze their photophysical and electronic properties,and highlight some of the latest applications of I‐III‐VI NCs in solar cells,light‐emitting diodes,bioimaging,and photocatalysis.Finally,based on the information reviewed,we highlight the existing problems and challenges.
文摘Renewable energy options, including solar power, are becoming increasingly viable alternatives to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic (PV) technology is one type of solar energy technologies that has recently received substantial attention because it offers the possibility of providing clean power sources for buildings. The aim of this paper is to examine the economic viability of using solar PV within future residential buildings in the oil-rich Saudi Arabia. Strictly speaking, the prospects of using the PV in order to provide 10% of the electricity to be consumed in the houses, which are going to be built in Sandi Arabia over the period 2010-2025, are examined. The study reveals that significant economic and environmental benefits could be realized as a result of such an endeavor.
文摘The performance of each type of building must meet all the needs and requests of new real estate markets. In fact, in the excellent architectures, the user can manage, with autonomy and flexibility, each system and product, according to the new energy and building technologies too. The main objective is the social and environmental sustainability with the reduction of fossil fuels and the greenhouse gas effect, pushing the use of renewable energies, in a new trend of land regeneration with sustainable buildings and settlement recovery. The energy crisis, mainly generated by the climate change, the air pollution, with consequent extinction of the species, reduction of the land and the work, the degradation and the environmental and seismic risk, focuses on the security and quality of construction systems, integrated use of clean resources. The methodologies aimed at integrating of energy-efficient and innovative building technologies in architecture, from design to management, to produce electric and thermal energy with active and passive properties, for a high-performance habitat. Therefore, the use of solar photovoltaic in the buildings, BIPV (Building Integrated Photovoltaic) with high-performance glass vision, efficient systems, intelligent materials, is integrated in architectures with the use of innovative construction systems, finally, technology of OPV (Organic Photovoltaic), multi-junction cells, the dye sensitized solar cells in the solid state, etc., and adoption of storage systems.
基金China Southern Power Grid New Energy Experimental Project(No.03HC0901578)
文摘Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic(PV) grid power,PV off- grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual controller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage battery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.
文摘Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology and actual energy production. Solar energy is widely under-used and one way to reduce this is to improve production in low-energy places with high demand: large cities. According to this option, about 40% of the electricity consumption in the built environment could be produced by solar PV systems and energy storage systems. This paper discusses conditions in the built environment and functional and design qualities enabling an increased diffusion of the technologies In a comparative analysis of PV technologies, the criteria taken into account encompass efficiency of the type of solar cell and commercial availability. Special attention is paid to the design features of different PV systems, like flexibility, colour and transparency that might help in their utilization as integrated in building material and ornaments in modem architecture. The same procedure is followed for electricity storage devices. The preliminary conclusion is that at present the freedom of design is largest for a combination of crystalline silicon PV cells and Li-ion batteries.
文摘The electrical new technology is a new frontier science.This kind of technology, with the development and progress of society, makes the continuous development and innovation.It is the future development trend of electrical engineering system,which plays a very important role in technological innovation.The principle and theoretical support for the development of electrical new technology includes Bio- electro magnetics, plasma physics, electromagnetic fluid mechanics and gas discharge physics etc.In addition, under the application of permanent magnetic materials and other new materials, the electrical new technology and obtained further development also promote the development and application of electronic power supply, strong magnetic field technology, solar photovoltaic power generation, and superconducting power technology.This paper mainly analyzes the application of electrical new technology in electromechanical integration.
文摘PV (photovoltaic) solar panels generally produce electricity in the 6% to 12% efficiency range, the rest is being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PV/T) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PV/T system as part of a closed loop single phase water CDU (coolant distribution unit) in laminar forced convection. In particular, the analysis was conducted on the optimal cooling performance of the thermal part, testing polynomial channel profiles of varying order (from zero to fourth) for channels of a real industrial module heat sink, under the following conditions: ideal flux of 1,000 W/m2 on one side, insulation on the opposite side, periodic conditions on the remaining sides, fully developed thermal and velocity profile in laminar flow of water. Through the use of a genetic algorithm, we have optimized the shape of the channel's sidewalls in terms of heat transfer maximization. In terms of Nusselt number, results show that fourth order profiles are the most efficient. When limits to allowable pressure loss and module weight are introduced, these bring generally to a lower efficiency of the system than the unconstrained case.
文摘Embracing renewable energy technology makes a lot of sense for the public sectors and schools as it meets the government sustainability goals and provides a financially viable means of achieving carbon savings while offering income potential. This study is aimed to quantify the achievable energy saving by spread use ofphotovoltaic systems on public building stock in the city of Rome. The installation of PV (photovoltaic) systems in the historic center depends on the feasibility conditions, generally more complex compared to the cases examined in the consolidated city, because they require compliance with the formal and aesthetic characteristics of the buildings, so the choice must be made between compatible components, which allow to minimize the transformation. The suburbs are characterized by large plane roofs in bad conditions and belonging to isolated buildings, so the useful surface, according to shading condition, offers a big potential for renewable technologies. The research provides an evaluation of maximum production of solar energy and the subsequent energy saving and reduction of greenhouse gasses, using parametric data, and an evaluation of the cost-effectiveness, with a rough calculation of return on investment.
文摘This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.
文摘The paper presents the design and field test of a distributed solar PV system for industrial application (DGPVi). DGPVi utilizes HyPV (hybrid PV) system which generates solar power for self-consumption in lighting and air conditioning in a production line of a factory when solar energy is available. It does not feed the excess PV power to the grid. HyPV will be switched to grid power supply when solar energy is not available. A 3 kWp DGPVi is installed in a factory for field demonstration. The test results show that the solar PV power generated can be utilized immediately. The solar energy generation efficiency (kWh/day per kWp PV installation) of DGPVi is close to that of grid-tied PV system without self-consumption and battery storage. The yearly return on investment of DGPVi is 2.0% at the present installation cost or 3.3% at further cost-down cost. The payback time will be 14.3 years at the present installation cost or 12.1 years at cost-down cost. The present study verifies the economic feasibility of DGPVi.
文摘In the last few decades, in the world and also in the European Union, considerable resources had been invested in the rapid development of renewable energy sources and distributed generation in general. At the same time, power consumption is continuously increasing, and consumers are becoming more complex, which ultimately requires new investments in the distribution network. Concept of smart grids is generally accepted as a possible solution. Smart grid is a concept with many elements, where monitoring and control of every element in the chain of production, transmission, distribution and final consumption enable much more efficient delivery and use of electricity. One of the elements of smart grid efficiency is the ability of real-time demand-supply balancing. This balancing is carried out by monitoring of consumption and redistribution of electricity among individual end users, according to their needs. The aim of this paper is creating algorithm for real-time load management using power measurements. Algorithm for real-time load management at the ETFOS (Faculty of Electrical Engineering in Osijek), Croatia is created based on measurements of photovoltaic power plant production, the power consumption of air conditioning system and the faculty building total electricity consumption. Expected result of real-time re-dispatching of air conditioners consumption, depending on the level of electricity production in photovoltaic power plant is decreasing peak demand of the faculty.
文摘In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to reduce GHG emission level, most of the countries in the world targeting towards green energy that is power generation from RE (renewable energy) sources. In this paper, it is considered to study prospects of RE sources in particular, solar and wind in Victoria State which are abundant as compared to other sources of renewable. The wind and solar energy feasibility study and sensitivity analysis has been done for Victoria with the aid of HOMER (hybrid optimization model of electric renewable) simulation software. From the study, it has clearly evicted that wind energy combinational HPS (hybrid power system) has more contribution, and high potential than solar PV (photovoltaic) systems for a particular location. This study also investigates the influences of energy storage in the proposed HPS.
文摘A dish/stifling solar thermal electricity system consists of two parts: a dish solar concentrator and a Stifling engine. For optimizing the system, in this paper, the mathematical model for concentrator design was established and the effects of those design parameters of concentrator, such as the size and intensity of the focal point, the receiver temperature, on the efficiency of the Stifling engine and output power were numerically simulated. The results of the simulation revealed a close relationship between power and efficiency because of power losses, and there was a maximum for the engine efficiency and power with increasing solar radiation because there was a peak value of system efficiency with increasing receiver temperature. So, in view of our Stifling engine, the 450 rim angle and 6m focal length are optimal design for concentrator and the 800℃receiver temperature is best.
文摘The impact of large-scale grid-connected renewable power sources, such as wind generators and solar photovoitaic systems, on transient stability of synchronous generators is discussed in this paper. The permanent magnet synchronous generator with variable speed wind turbine is used in the simulation analysis as a wind generator model. The transient stability analysis is performed for IEEE 9-bus system model with high-penetration renewable power sources. The effect of FRT (fault ride-through) capability implemented for each power source on the transient stability is investigated.
文摘Traditional light bulbs (e.g., incandescent, fluorescent) use too much electricity, convert very little energy into light of sufficient quality and in their production use toxic contaminants. During the last few years, a new type of light source, LED (light emitting diode) bulb, has gained increasing popularity and its costs are set to plunge even further. LED bulbs offer many advantages over traditional sources, and they can be used as a direct replacement to existing lighting. This paper will use a spreadsheet-based analysis with hourly solar data supplied by Ecotect to show that, the efficiency of LED installations can be increased when used in conjunction with photovoltaic modules, as the two generate (and use) DC (direct-current) electricity, thereby eliminating intermediate-level losses in the electronic circuitry. If a storage battery is included, the solar panels generate electricity during the times when the occupants are not necessarily using the lighting, but the stored electricity can be used to power the lighting when the energy is required. The latest results demonstrate that, a slight reduction in the required floor area to be lit allows the solar-battery-LED system to be implemented in small buildings using a storage battery size that is within the range of present commercial devices.
文摘CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.