Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD...Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD)methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain.Total-sky imager(TSI)discrimination results corrected by manual checks are used as the benchmark for the evaluation.The performance heavily relies on the criteria adopted by the CSD methods.Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates,and vice versa.A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases.Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions,which is more severe if clear-sky irradiance is not properly estimated.The mean true positive rate(CSD method correctly detects clear sky)decreases from 45%for aerosol optical depth(AOD)≤0.2%to 6%for AOD>0.5.The results clearly indicate that CSD methods in a highly polluted region still need further improvements.展开更多
Black carbon (BC) aerosols can strongly absorb solar radiation in very broad spectral wavebands, from the visible to the infrared. As a potential factor contributing to global warming, BC aerosols not only directly ...Black carbon (BC) aerosols can strongly absorb solar radiation in very broad spectral wavebands, from the visible to the infrared. As a potential factor contributing to global warming, BC aerosols not only directly change the radiation balance of the earth-atmosphere system, but also indirectly affect global or regional climate by acting as cloud conden- sation nuclei or ice nuclei to alter cloud mierophysical properties. Here, recent progresses in the studies of radiative forcing due to BC and its climate effects are reviewed. The uncertainties in current researches are discussed and some suggestions are provided for future investigations.展开更多
基金supported by the National Key R&D Program of China grant number 2017YFA0603504the Strategic Priority Research Program of the Chinese Academy of Sciences grant number XDA17010101the National Natural Science Foundation of Chinagrant number 41875183。
文摘Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD)methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain.Total-sky imager(TSI)discrimination results corrected by manual checks are used as the benchmark for the evaluation.The performance heavily relies on the criteria adopted by the CSD methods.Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates,and vice versa.A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases.Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions,which is more severe if clear-sky irradiance is not properly estimated.The mean true positive rate(CSD method correctly detects clear sky)decreases from 45%for aerosol optical depth(AOD)≤0.2%to 6%for AOD>0.5.The results clearly indicate that CSD methods in a highly polluted region still need further improvements.
基金financially supported by the National Basic Research Program of China(2011CB403405 and 2010CB955608)the Public Meteorology Special Foundation of MOST(GYHY200906020)
文摘Black carbon (BC) aerosols can strongly absorb solar radiation in very broad spectral wavebands, from the visible to the infrared. As a potential factor contributing to global warming, BC aerosols not only directly change the radiation balance of the earth-atmosphere system, but also indirectly affect global or regional climate by acting as cloud conden- sation nuclei or ice nuclei to alter cloud mierophysical properties. Here, recent progresses in the studies of radiative forcing due to BC and its climate effects are reviewed. The uncertainties in current researches are discussed and some suggestions are provided for future investigations.