期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于太阳吸收光谱观测大气一氧化碳柱总量 被引量:4
1
作者 徐兴伟 王薇 +6 位作者 刘诚 单昌功 孙友文 胡启后 田园 韩雪冰 杨维 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第5期1329-1334,共6页
基于地基高分辨率傅里叶变换红外光谱技术观测合肥地区一氧化碳(CO)垂直柱总量的变化,连续采集近红外太阳吸收光谱,获得2015年9月至2016年7月整层大气CO的垂直柱总量的时间序列。观测结果显示合肥地区大气中柱平均干空气混合比(XCO)有... 基于地基高分辨率傅里叶变换红外光谱技术观测合肥地区一氧化碳(CO)垂直柱总量的变化,连续采集近红外太阳吸收光谱,获得2015年9月至2016年7月整层大气CO的垂直柱总量的时间序列。观测结果显示合肥地区大气中柱平均干空气混合比(XCO)有着明显的季节变化,在2015年10月有着较小值,然后逐渐增加,到2016年3月达到最大值,之后逐渐下降,在2016年7月底达到最小值,并分析了季节变化的原因。为了对地基近红外波段观测进行验证,采用MOPITT卫星数据和站点同一光谱仪采集的中红外光谱反演的CO柱总量与同期测量的数据进行比对。结果表明,MOPITT卫星数据与地基观测值的季节变化一致,而MOPITT观测值整体高于地基FTS观测值;近红外和中红外波段反演的CO柱总量季节变化范围一致。将地基观测和卫星观测数据进行日平均计算,并进行相关性分析,得到的地基近红外和卫星观测、地基中红外的CO日平均柱总量的线型回归相关系数分别为0.85和0.91,显示出高的相关性,证明了地基近红外波段反演CO垂直柱总量数据的准确性。首次采用地基高分辨率傅里叶变换红外光谱技术观测合肥地区CO的垂直柱总量,并将得到的观测结果与卫星数据比对,得到准确的CO的垂直柱总量,为解大气CO的时空分布状况及其演变规律、追踪合肥地区CO的源汇分布提供理论依据。 展开更多
关键词 傅里叶变换红外光谱技术 一氧化碳 柱总量 太阳吸收光谱 卫星数据
下载PDF
利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl_(2)F_(2)的时空变化特征 被引量:3
2
作者 曾祥昱 王薇 +5 位作者 刘诚 单昌功 谢宇 胡启后 孙友文 Polyakov Alexander Viktorovich 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第20期3-11,共9页
大气二氯二氟甲烷(CCl_(2)F_(2),CFC-12)是人工合成的化学制剂,对平流层臭氧可产生严重的破坏和损耗.研究大气CFC-12的探测技术并获取其时空分布和变化,对了解区域氟氯烃气体变化趋势以及对平流层臭氧的影响具有重要意义.本文利用地基... 大气二氯二氟甲烷(CCl_(2)F_(2),CFC-12)是人工合成的化学制剂,对平流层臭氧可产生严重的破坏和损耗.研究大气CFC-12的探测技术并获取其时空分布和变化,对了解区域氟氯烃气体变化趋势以及对平流层臭氧的影响具有重要意义.本文利用地基高分辨率傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)技术研究大气CFC-12的垂直分布和柱浓度的反演方法,基于最优估计算法反演2017-2020年合肥地区大气CFC-12的垂直廓线和柱总量.合肥大气CFC-12反演获得的垂直廓线表明,大气CFC-12在对流层以及低平流层处具有较高浓度,在垂直高度40 km以上浓度极低.合肥地区大气CFC-12的柱浓度含量呈现出夏季浓度较高,冬季与初春浓度较低的季节变化;观测期间大气CFC-12柱浓度呈现缓慢下降的趋势,年均变化率为-0.68%.将地基观测数据与ACE-FTS卫星观测数据进行比对,在高度范围16-28 km内两个CFC-12偏柱总量的相关性系数为0.73,可见地基和卫星数据具有较好的一致性.长期观测结果表明了地基高分辨率FTIR技术在观测大气中CFC-12的浓度垂直分布与季节变化上具有高的准确性和可靠性. 展开更多
关键词 二氯二氟甲烷 太阳吸收光谱 柱总量 垂直廓线
下载PDF
Comparison of long-term total ozone observations from space-and ground-based methods at Zhongshan Station,Antarctica
3
作者 ZHANG Lei ZHENG XiangDong BIAN LinGen 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第11期2013-2024,共12页
Total ozone errors for satellite observations at Zhongshan Station in Antarctica are characterized using their relative difference (RD) from ground-based Brewer observations during 1993-2015. All satellite total ozo... Total ozone errors for satellite observations at Zhongshan Station in Antarctica are characterized using their relative difference (RD) from ground-based Brewer observations during 1993-2015. All satellite total ozone observations slightly overestimated ground-based ones (with RD less than 4%). This is in contrast to conclusions drawn from global-scale validation studies, where main ground-based reference stations are located in middle latitudes. Given multiple total ozone data per day at Zhongshan Station, observed by a sun synchronous orbit satellite, measurements at the lowest solar zenith angle (SZA) show greatest consistency with Brewer ones, having an overall RD of-0.02-1.15%. Algorithm-retrieved total ozone data from the Total Ozone Mapping Spectrometer (TOMS), including Solar Backscatter Ultra Violet (SBUV), TOMS-Earth Probe (EP), Ozone Monitoring Instrument (OMI)-TOMS, show best agreement with ground-based values; followed by the Global Ozone Measurement Experiment-type Direct Fitting (GOD-FIT) algorithm for the GOME-2A, and finally the Differential Optical Absorption Spectroscopy (DOAS) --Algorithm retrieved products for satellites-detectors of Global Ozone Measurement Experiment (GOME), Scanning Imaging Absorption spectroMetr for Atmospheric CHartographY (SCIAMACHY), and OMI. Satellite total ozone RD presents some statistical characteristics, but no specific trends. DOAS and GOME-2A algorithms have values that significantly increase, when the SZA is above 60°-70°, whereas values for GOME-2A decrease, when the SZA is 80-85°. Satellite total ozone RD is a minimum, when the Brewer total ozone is 300-350 DU, with an obvious increase in RD values for DOAS- and GOME-2A, when the Brewer total ozone is 150-300 DU. Satellite total ozone RD obviously increases, as the time difference between satellite overpasses and Brewer measurements grows. Specifically, RD rises as the absolute time difference increases to more than 4 h, yielding an OMI-TOMS RD of more than 10% as this difference increases to 8 h. The DOAS- RD may be up to 15%, while GOME-2A RD does not exceed 10%. The satellite total ozone RD may reach -5%, as the distance between the satellite overpass pixel and the station become more than 100 km. Possibly because of the discrepancy in surface albedo, the TOMS-algorithm retrieved total ozone produced underestimation, when the pixel on the south-east side of the station (the Antarctica continent) is used, but overestimation on the north-west side of the station (the Indian Ocean). Consistency between space and ground-based total ozone data is least for the "ozone hole". Typically, the RD of TOMS-algorittun retrieved total ozone is within 1%/10 yr. Thus, the SBUV and Brewer monthly averaged total ozone anomalies from 1996 to 2015 were 1%/10 yr and 0.9%/10 yr, respectively. Both indicate slight, but consistent, ozone layer recovery. 展开更多
关键词 Relative difference (RD) Satellite total ozone Brewer total ozone Zhongshan Station ANTARCTICA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部