期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
SDO揭示太阳磁笼阻止太阳喷发机制
1
作者 王海名 《空间科学学报》 CAS CSCD 北大核心 2018年第4期430-430,共1页
NASA网站近日报道,利用太阳动力学天文台(SDO)的观测数据,法国研究人员发现太阳表面形成的磁笼能阻止耀斑的喷发,相关论文发表在Nature上。SDO任务在2014年10月期间记录了太阳表面木星大小的太阳黑子群事件。这一区域太阳活动十分活跃... NASA网站近日报道,利用太阳动力学天文台(SDO)的观测数据,法国研究人员发现太阳表面形成的磁笼能阻止耀斑的喷发,相关论文发表在Nature上。SDO任务在2014年10月期间记录了太阳表面木星大小的太阳黑子群事件。这一区域太阳活动十分活跃,但始终未发生大规模的日冕物质抛射,仅出现了一次X级的耀斑。 展开更多
关键词 太阳磁笼 太阳喷发 空间技术 发展现状
下载PDF
太阳也会“打喷嚏”
2
作者 常国兵 《飞碟探索》 1997年第6期32-32,共1页
太阳也会「打喷嚏」常国兵欧洲“太阳观测卫星”目前观测到太阳“打喷嚏”现象,即太阳突然间喷发出大量气体。英国皇家天文学会称,太阳喷发现象是太阳内部活动的表现之一,它可在短时间内向外喷发出大量炽热的气体,这些气体的运动速... 太阳也会「打喷嚏」常国兵欧洲“太阳观测卫星”目前观测到太阳“打喷嚏”现象,即太阳突然间喷发出大量气体。英国皇家天文学会称,太阳喷发现象是太阳内部活动的表现之一,它可在短时间内向外喷发出大量炽热的气体,这些气体的运动速度可达每小时几百万千米,形成强烈的... 展开更多
关键词 太阳观测卫星 太阳内部 太阳喷发 太阳风暴 向外喷发 皇家天文学会 地球磁场 望远镜 运动速度 预报
下载PDF
彗星知识问答
3
作者 万淅琳 《科学启蒙》 1996年第3期8-9,共2页
问:你知道典型彗星的基本形态吗? 答:彗星是最奇特的天体之一。形状极其特别,远离太阳时,是发光的云雾状小斑点;接近太阳时,由彗核、彗发、彗尾和彗云组成。其中彗核和彗发合起来称为彗头,彗星物质大部分集中在彗核。不同彗星大小不同,... 问:你知道典型彗星的基本形态吗? 答:彗星是最奇特的天体之一。形状极其特别,远离太阳时,是发光的云雾状小斑点;接近太阳时,由彗核、彗发、彗尾和彗云组成。其中彗核和彗发合起来称为彗头,彗星物质大部分集中在彗核。不同彗星大小不同,“哈雷” 展开更多
关键词 彗星 知识问答 太阳 彗核 彗尾 天文学家 太阳喷发 周期彗星 太阳 日全食
原文传递
Origin and structures of solar eruptions Ⅰ: Magnetic flux rope 被引量:15
4
作者 CHENG Xin GUO Yang DING MingDe 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第8期1383-1407,共25页
Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere in... Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope(MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future. 展开更多
关键词 Coronal mass ejections Flares Magnetic flux ropes Magnetic field EUV/UV emissions Photosphere Corona Particle acceleration
原文传递
Numerical experiments of disturbance to the solar atmosphere caused by eruptions 被引量:3
5
作者 MEI ZhiXing UDO Ziegler LIN Jun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第7期1316-1329,共14页
Despite extensive research on various global waves in solar eruptions, debate continues on the intrinsic nature of them. In this work, we performed numerical experiments of the coronal mass ejection with emphases on t... Despite extensive research on various global waves in solar eruptions, debate continues on the intrinsic nature of them. In this work, we performed numerical experiments of the coronal mass ejection with emphases on the associated large-scale MHD waves. A fast-mode shock forms in front of the flux rope during the eruption with a dimming region following it, and the development of a three-component structure of the ejecta is observed. At the flank of the flux rope, the slow-mode shock and the velocity vortices are also invoked. The dependence of the eruption energetics on the strength of the background field and the coronal plasma density distribution is apparent: the stronger the background field is, and/or the lower the coronal plasma density is, the more energetic the eruption is. In the lower Alfven speed environment, the slow mode shock and the large scale velocity vortices may be the source of the EIT wave. In the high Alfvdn speed environment, on the other hand, the echo due to the reflection of the fast shock on the bottom boundary could be so strong that its interaction with the slow mode shock and the velocity vortices produces the second echo propagating downward and causing the secondary disturbance to the boundary surface. We suggest that this second echo, together with the slow shock and the velocity vortices, could constitute a possible candidate of the source for the EIT wave. 展开更多
关键词 sun: coronal mass ejections sun: flares sun: magnetic fields plasmas: MHD waves plasma: shock waves
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部