This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combinat...This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.展开更多
This paper mainly shows the demonstration of solar air conditioning systems in China, which includes LiBr-H2O absorption cooling, silica gel-water adsorption chiller, desiccant cooling and hybrid integrated energy sys...This paper mainly shows the demonstration of solar air conditioning systems in China, which includes LiBr-H2O absorption cooling, silica gel-water adsorption chiller, desiccant cooling and hybrid integrated energy systems for buildings. The match of solar collector types and chiller types have been discussed and suggested.展开更多
In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demon...In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demonstration system (ET 200). Commercial glass pane of 3 mm thick having the same dimensions as that of the apparatus was placed above the collector at a distance of 2 cm, 4 cm and 6 cm. Tests were done with and without the added glass. Experiments were performed for double glazing with two positions of the light meter. In one position, it was placed in the middle of the collector surface. While, in the other one, the light meter was placed in the middle of the added glass. To study the effect of double glazing on the performance of the solar collector ET 200, the correct position of the light meter was to place it exactly in the middle of the additional pane under the lamp. Double glazing does not enhance the performance of the solar collector because of the high resistance of the system glass air glass. The efficiency of double glazing solar collector decreases with the increasing the distance of the two separated glasses.展开更多
This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathemati...This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathematical model to control the exiting temperature of the heating fluid as well as the temperatures of the absorber and the glass. The experimental level investigates the influence of the solar absorber tube diameter on the performances of the driving device. Several experiments were made in order to know the possibility to reach temperatures being able to ensure for example the ammonia vaporization in the generator of a solar absorption refrigeration system. These experiments were carried out under various operating and climatic conditions. The results are presented and discussed.展开更多
The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient larg...The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.展开更多
The experimental system of heat loss of all-glass evacuated solar collector tubes(evacuated tube) is firstly designed and constructed,which uses electric heater as thermal resource.The equilibrium temperatures are les...The experimental system of heat loss of all-glass evacuated solar collector tubes(evacuated tube) is firstly designed and constructed,which uses electric heater as thermal resource.The equilibrium temperatures are less than±1℃during the test.and the temperature differences of up/middle/low node in the tube are less than 1℃,3℃,and 7℃respectively.The heat loss of evacuated tube increases about 2.7%with vacuum state of 0.01--1 mPa,and it has the best performance at tube temperature of 20--280℃.The invalidation tube(>200 mPa) has the biggest heat loss that increases linearly with the tube temperature.The evacuated tubes with the vacuum of 0.01-1 mPa are suitable for most solar adsorption refrigeration.展开更多
文摘This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.
基金support of this research from Nation-al Key Technologies R&D Program ( No.2006BAA04B03) is gratefully acknowledged.
文摘This paper mainly shows the demonstration of solar air conditioning systems in China, which includes LiBr-H2O absorption cooling, silica gel-water adsorption chiller, desiccant cooling and hybrid integrated energy systems for buildings. The match of solar collector types and chiller types have been discussed and suggested.
文摘In this research paper, an attempt has been made to come across the effect of distance between double glazing on the efficiency of a solar thermal collector. Experiments were carded out on an active solar energy demonstration system (ET 200). Commercial glass pane of 3 mm thick having the same dimensions as that of the apparatus was placed above the collector at a distance of 2 cm, 4 cm and 6 cm. Tests were done with and without the added glass. Experiments were performed for double glazing with two positions of the light meter. In one position, it was placed in the middle of the collector surface. While, in the other one, the light meter was placed in the middle of the added glass. To study the effect of double glazing on the performance of the solar collector ET 200, the correct position of the light meter was to place it exactly in the middle of the additional pane under the lamp. Double glazing does not enhance the performance of the solar collector because of the high resistance of the system glass air glass. The efficiency of double glazing solar collector decreases with the increasing the distance of the two separated glasses.
文摘This article outlines the theoretical and experimental performance studies of a cylindro-parabolic solar collector. The theoretical study consists on the establishment, through mass and energy balances, of a mathematical model to control the exiting temperature of the heating fluid as well as the temperatures of the absorber and the glass. The experimental level investigates the influence of the solar absorber tube diameter on the performances of the driving device. Several experiments were made in order to know the possibility to reach temperatures being able to ensure for example the ammonia vaporization in the generator of a solar absorption refrigeration system. These experiments were carried out under various operating and climatic conditions. The results are presented and discussed.
基金Science and Technology Fund of SGCC(Grant No.KJ-2012-627)The National Natural Science Foundation of China(Grant No.51321005)
文摘The integration and accommodation of the wind and solar energy pose great challenges on today’s power system operation due to the intermittent nature and volatility of the wind and solar resources.High efficient large-scale electrical energy storage is one of the most effective and economical solutions to those problems.After the comprehensive review of the existing storage technologies,this paper proposes an overall design scheme for the Non-supplementary Fired Compressed Air Energy Storage(NFCAES)system,including system design,modeling and efficiency assessment,as well as protection and control.Especially,the design principles of the multistage regenerative,i.e.heat recovery system which is used to fully recycle and utilize the waste heat from compression are provided,so as the overall system efficiency evaluation method.This paper theoretically ascertains the storage decoupling rules in the potential and internal energy of molecular compressed air and reveals the conversion mechanism of gas,heat,power,electricity and other forms of energy.On this basis,a 500-k W physical simulation system of CAES system(TICC-500,Tsinghua-IPCCAS-CEPRI-CAES)is built,which passed a system-wide 420-k W load power generation test with less pollution and zero carbon emissions.Besides,the multi-form energy conversion of multi-stage regenerative CAES and storage efficiency is verified,especially its incomparable superiority in solving the uncertainty problem in wind and solar power generation.Finally,the propaganda and application scenario of the CAES system in China is introduced.
基金the National Natural Science Foundation of China(No.30771245)the Innovation Program of Shanghai Municipal Education Commission(No.09YZ229)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50502)
文摘The experimental system of heat loss of all-glass evacuated solar collector tubes(evacuated tube) is firstly designed and constructed,which uses electric heater as thermal resource.The equilibrium temperatures are less than±1℃during the test.and the temperature differences of up/middle/low node in the tube are less than 1℃,3℃,and 7℃respectively.The heat loss of evacuated tube increases about 2.7%with vacuum state of 0.01--1 mPa,and it has the best performance at tube temperature of 20--280℃.The invalidation tube(>200 mPa) has the biggest heat loss that increases linearly with the tube temperature.The evacuated tubes with the vacuum of 0.01-1 mPa are suitable for most solar adsorption refrigeration.