为实现温室内全天供热、变温管理和节能的目的,结合大型玻璃温室和无土栽培技术要求,确定了总体加温结构设计方案和工作原理,对主要装置集热器进行选型和结构设计;利用Solidworks三维建模对太阳能板的安装和排布进行说明和分析,并结合...为实现温室内全天供热、变温管理和节能的目的,结合大型玻璃温室和无土栽培技术要求,确定了总体加温结构设计方案和工作原理,对主要装置集热器进行选型和结构设计;利用Solidworks三维建模对太阳能板的安装和排布进行说明和分析,并结合当地的气象资料对单位面积的集热效率进行经济性分析,考虑太阳能的不稳定因素,分别设计了主加热及辅助加热系统。结果表明,对太阳能集热的设计和科学的安置有效地提高了太阳能的利用率;与传统电加温进行经济性计算,在20年内单位面积可节约能源12 942.46 k W·h,为我国现代化温室加温系统的研究提供了参考。展开更多
An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and...An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and 45°. The results of the temperature profile across the air gap showed that heat transfer from the absorber plate to the air stream was mainly by convection. At a particular section, mean air temperature could be calculated from the arithmetic mean of the temperature profile across the air gap to within ± 2 ℃. The axial air temperature distribution was non linear and did not increase much beyond 1 m of collector length. It tended to decrease towards the end of the collector. Overall glass, absorber plate and mean air temperatures over the entire length of the solar air heater could be determined by averaging the mean axial temperatures to within ± 2 ℃. The heater performed better as inclination increased.展开更多
文摘为实现温室内全天供热、变温管理和节能的目的,结合大型玻璃温室和无土栽培技术要求,确定了总体加温结构设计方案和工作原理,对主要装置集热器进行选型和结构设计;利用Solidworks三维建模对太阳能板的安装和排布进行说明和分析,并结合当地的气象资料对单位面积的集热效率进行经济性分析,考虑太阳能的不稳定因素,分别设计了主加热及辅助加热系统。结果表明,对太阳能集热的设计和科学的安置有效地提高了太阳能的利用率;与传统电加温进行经济性计算,在20年内单位面积可节约能源12 942.46 k W·h,为我国现代化温室加温系统的研究提供了参考。
文摘An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and 45°. The results of the temperature profile across the air gap showed that heat transfer from the absorber plate to the air stream was mainly by convection. At a particular section, mean air temperature could be calculated from the arithmetic mean of the temperature profile across the air gap to within ± 2 ℃. The axial air temperature distribution was non linear and did not increase much beyond 1 m of collector length. It tended to decrease towards the end of the collector. Overall glass, absorber plate and mean air temperatures over the entire length of the solar air heater could be determined by averaging the mean axial temperatures to within ± 2 ℃. The heater performed better as inclination increased.