以330 MW光煤互补发电系统为例,研究负荷、辐照条件复合扰动情况下太阳能侧集热器效率、燃煤侧高加热转功效率的变化,在此基础上探讨3个高加6种集成方式下太阳能净发电效率与机组负荷及与太阳辐照度之间的关系,确定各负荷和辐照度时段...以330 MW光煤互补发电系统为例,研究负荷、辐照条件复合扰动情况下太阳能侧集热器效率、燃煤侧高加热转功效率的变化,在此基础上探讨3个高加6种集成方式下太阳能净发电效率与机组负荷及与太阳辐照度之间的关系,确定各负荷和辐照度时段的最佳集成方式。针对夏季中午机组负荷低峰、辐照高峰所产生的太阳能热量的浪费问题,提出光煤互补系统集成方式切换运行的设想,计算表明在该运行方式下,机组每天利用太阳能可多发电9175.7 k Wh。展开更多
This paper introduces a set of automatic dust removal device for street lamp solar panels. The device realizes the automatic dust removal for street lamp solar panels by three steps consisting of data acquisition, aut...This paper introduces a set of automatic dust removal device for street lamp solar panels. The device realizes the automatic dust removal for street lamp solar panels by three steps consisting of data acquisition, automatic control and mechanical dust removal. Our scheme is as follows, according to the comparison between the actual power generation and the relatively ideal condition of power generation of solar panels, we selectively conduct dust removal operation to panels. The paper demonstrates the feasibiliW of the technology based on the example of street lamp solar panels (40w). According to the calculation, the solar panels equipped with our device will greatly improve the power generation efficiency of solar panels, which means there will be 32 more degrees generated every year. Extension and application of the technique device will be beneficial for the improvement of solar panels power generation efficiency and the extension of the service life of the panels.展开更多
文摘以330 MW光煤互补发电系统为例,研究负荷、辐照条件复合扰动情况下太阳能侧集热器效率、燃煤侧高加热转功效率的变化,在此基础上探讨3个高加6种集成方式下太阳能净发电效率与机组负荷及与太阳辐照度之间的关系,确定各负荷和辐照度时段的最佳集成方式。针对夏季中午机组负荷低峰、辐照高峰所产生的太阳能热量的浪费问题,提出光煤互补系统集成方式切换运行的设想,计算表明在该运行方式下,机组每天利用太阳能可多发电9175.7 k Wh。
文摘This paper introduces a set of automatic dust removal device for street lamp solar panels. The device realizes the automatic dust removal for street lamp solar panels by three steps consisting of data acquisition, automatic control and mechanical dust removal. Our scheme is as follows, according to the comparison between the actual power generation and the relatively ideal condition of power generation of solar panels, we selectively conduct dust removal operation to panels. The paper demonstrates the feasibiliW of the technology based on the example of street lamp solar panels (40w). According to the calculation, the solar panels equipped with our device will greatly improve the power generation efficiency of solar panels, which means there will be 32 more degrees generated every year. Extension and application of the technique device will be beneficial for the improvement of solar panels power generation efficiency and the extension of the service life of the panels.